Article Publish Status: FREE
Abstract Title:

Evaluating protective and therapeutic effects of alpha-lipoic acid on cisplatin-induced ototoxicity.

Abstract Source:

Cell Death Dis. 2018 Aug 1 ;9(8):827. Epub 2018 Aug 1. PMID: 30068942

Abstract Author(s):

Kyung-Hee Kim, Byeonghyeon Lee, Ye-Ri Kim, Min-A Kim, Nari Ryu, Da Jung Jung, Un-Kyung Kim, Jeong-In Baek, Kyu-Yup Lee

Article Affiliation:

Kyung-Hee Kim


Cisplatin, a small platinum-containing molecule, is a widely used, highly effective anticancer drug. However, severe side effects have been found in cancer patients treated with cisplatin, including nephrotoxicity, neurotoxicity, and ototoxicity. These cisplatin-induced side effects can have a major impact on patient quality of life, including social development problems in pediatric patients that develop hearing loss. Previous studies have suggested that the major cause of cisplatin-induced ototoxicity is abnormal accumulation of reactive oxygen species (ROS) and oxidative stress. Alpha-lipoic acid (ALA), one of the most effective antioxidants, is known to be involved in the cellular antioxidant system and may have a protective effect on cisplatin-induced ototoxicity. However, the therapeutic effect of ALA on damaged hearing function and its detailed mechanism of action are not fully understood. This study focused on determining whether ALA has a potential as a protective and/or therapeutic agent for cisplatin-induced ototoxicity. Histological and physiological analyses were performed using cisplatin-treated mouse cochlea and HEI-OC1 culture cells in pre- and post-treatment with ALA in vitro and in vivo. We found that ALA contributes to protecting mitochondrial function by preventing ROS accumulation and inhibiting apoptotic cell death. Importantly, post-treatment with ALA consistently showed an almost equal restorative effect to pretreatment, in vitro and in vivo, supporting the possible use of ALA as a therapeutic agent for cisplatin-induced ototoxicity. This study is the first report on a strong therapeutic potential of ALA to rescue ototoxic hearing loss caused by cisplatin, and our data provide key evidence that ALA may act as a reducing agent for glutathione disulfide to increase glutathione levels on behalf of glutathione reductase. This result was consistent in both cultured cells and the mouse model, which improves the clinical value of ALA for therapy of cisplatin-induced ototoxicity.

Study Type : Animal Study, In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.