Abstract Title:

Exposure to DDT metabolite p,p'-DDE increases autoimmune type 1 diabetes incidence in NOD mouse model.

Abstract Source:

J Immunotoxicol. 2015 Feb 27:1-11. Epub 2015 Feb 27. PMID: 25721050

Abstract Author(s):

Marina Cetkovic-Cvrlje, Marin Olson, Broc Schindler, Hwee Kiat Gong

Article Affiliation:

Marina Cetkovic-Cvrlje

Abstract:

Abstract The incidence of autoimmune Type 1 diabetes (T1D) has been steadily rising in developed countries. Although the exact cause of T1D remains elusive, it is known that both genetics and environmental factors play a role in its immunopathogenesis. Whereas a positive association between p,p'-DDE, a DDT metabolite, and Type 2 diabetes (T2D) has been well established, its role in T1D development in an experimental animal model has never been elucidated. This study seeks to investigate the effects of DDE exposure on the development of T1D in a NOD mouse model. As T1D is a T-cell-mediated disease, the underlying mechanism of DDE action on T-cells was studied in vitro and, in the context of acute and chronic DDE exposure, in vivo by investigating lymphocytes' viability, proliferation, their subsets and cytokine profiles. Chronic high-dose DDE treatment, initiated in pre-diabetic 8-week-old NOD females administered twice weekly intraperitoneally with 50 mg/kg DDE, significantly increased diabetes incidence and augmented disease severity in treated animals. Whereas T-cell proliferation and cell viability in the spleens of treated mice were not affected, diabetogenic action of chronic DDE exposure was associated with a decrease in regulatory T-cells and a suppression of secretion of protective cytokines, such as IL-4 and IL-10. Interestingly, an acute high-dose in vivo treatment of 8-week-old NOD males with 100 mg DDE/kg, administered intraperitoneally every other day over a period of 10 days, increased T-cell proliferation and potentiatedpro-inflammatory and TH1-type cytokine secretion, without affecting the splenocytes viability and the T-cell sub-populations. These results confirm that high-dose DDE treatments affect the immune system, in particularly T-cell function. In conclusion, this study shows for the first time that high-dose chronic DDE exposure exhibits a diabetogenic potential, with an underlying immunomodulatory mechanism of action, in the development of T1D in an experimental mouse NOD model.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.