Article Publish Status: FREE
Abstract Title:

Curcumin reverse methicillin resistance in Staphylococcus aureus.

Abstract Source:

Molecules. 2014 ;19(11):18283-95. Epub 2014 Nov 10. PMID: 25389660

Abstract Author(s):

Su-Hyun Mun, Sung-Bae Kim, Ryong Kong, Jang-Gi Choi, Youn-Chul Kim, Dong-Won Shin, Ok-Hwa Kang, Dong-Yeul Kwon

Article Affiliation:

Su-Hyun Mun

Abstract:

Curcumin, a natural polyphenolic flavonoid extracted from the rhizome of Curcuma longa L., was shown to possess superior potency to resensitize methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics. Previous studies have shown the synergistic activity of curcumin withβ-lactam and quinolone antibiotics. Further, to understand the anti-MRSA mechanism of curcumin, we investigated the potentiated effect of curcumin by its interaction in diverse conditions. The mechanism of anti-MRSA action of curcumin was analyzed by the viability assay in the presence of detergents, ATPase inhibitors and peptidoglycan (PGN) from S. aureus, and the PBP2a protein level was analyzed by western blotting. The morphological changes in the curcumin-treated MRSA strains were investigated by transmission electron microscopy (TEM). We analyzed increased susceptibility to MRSA isolatesin the presence of curcumin. The optical densities at 600 nm (OD600) of the suspensions treated with the combinations of curcumin with triton X-100 and Tris were reduced to 63% and 59%, respectively, compared to curcumin without treatment. N,N'-dicyclohexylcarbodiimide (DCCD) and sodium azide (NaN3) were reduced to 94% and 55%, respectively. When peptidoglycan (PGN) from S. aureus was combined with curcumin, PGN (0-125 μg/mL) gradually blocked the antibacterial activity of curcumin (125 μg/mL); however, at a concentration of 125 µg/mL PGN, it did not completely block curcumin. Curcumin hasa significant effect on the protein level of PBP2a. The TEM images of MRSA showed damage of the cell wall, disruption of the cytoplasmic contents, broken cell membrane and cell lysis after the treatment of curcumin. These data indicate a remarkable antibacterial effect of curcumin, with membrane permeability enhancers and ATPase inhibitors, and curcumin did not directly bind to PGN on the cell wall. Further, the antimicrobial action of curcumin involved in the PBP2a-mediated resistance mechanism was investigated.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.