n/a
Abstract Title:

AMPK/Nrf2 signaling is involved in the anti-neuroinflammatory action of Petatewalide B from Petasites japonicus against lipopolysaccharides in microglia.

Abstract Source:

Immunopharmacol Immunotoxicol. 2018 Jun ;40(3):232-241. Epub 2018 Feb 12. PMID: 29433360

Abstract Author(s):

Sun Young Park, Min Hyun Choi, Mei Li, Ke Li, Geuntae Park, Young-Whan Choi

Article Affiliation:

Sun Young Park

Abstract:

OBJECTIVES: Abnormal microglia secrete neuroinflammatory factors that play a pivotal role in neurodegenerative-disorder development. Thus, regulating abnormal microglia-activation could be a promising therapeutic strategy. The purposes of this study included investigating the effect of Petatewalide B on lipopolysaccharide- (LPS-) stimulated microglia and exploring the role of the AMPK/Nrf2- (adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2) signaling pathway in the anti-neuroinflammatory function of Petatewalide B.

METHODS: We divided the microglia into four groups: a control group, a Petatewalide B-treated group, an LPS-treated group, and an LPS and Petatewalide B-treated group. The four groups of microglia were experimented with, using the NO, ELISA, and promoter assays, and western blotting was conducted to determine LPS-stimulated neuroinflammatory responses.

RESULTS: We found that pretreatment with Petatewalide B strongly alleviates interleukin- (IL-) 1β, IL-6, and tumor-necrosis-factor-α (TNF-α) production, and suppresses iNOS and nitric oxide (NO) overexpression in LPS-stimulated microglia. The AMPK/Nrf2-signaling pathway is important for inducing anti-neuroinflammatory responses. Mechanistic studies report that Petatewalide B increases nuclear-Nrf2 translocation, and heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) expression in a dose-dependent manner. Furthermore, Petatewalide B significantly up-regulates HO-1 and NQO1 by specifically improving antioxidant-response-elements-transcription activity. We then investigated whether Nrf2/HO-1/NQO1 contribute to the anti-neuroinflammatory properties of Petatewalide B. Nrf2, HO-1, and NQO1 small-integrating-ribonucleic-acids (siRNAs) significantly blocked Petatewalide B-attenuated iNOS-promoter-activity in LPS-stimulated microglia. Furthermore, Petatewalide B also up-regulated AMPK-phosphorylation in a dose-dependent manner. We next evaluated whether blocking AMPK-phosphorylation using an inhibitor (compound C) would critically affect anti-neuroinflammatory responses. We found that the AMPK-phosphorylation is associated with nuclear-Nrf2 translocation and elevated HO-1 and NQO1 expression levels. Our data also showed that AMPK-inhibitor pretreatment significantly reverses Petatewalide B-attenuated iNOS-promoter-activity in LPS-stimulated microglia.

CONCLUSIONS: Our findings provide the possible mechanism of the anti-neuroinflammatory properties of Petatewalide B that result from beneficial responses in the AMPK/Nrf2-signaling pathway.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.