n/a
Article Publish Status: FREE
Abstract Title:

Neurogenic effect of exercise via the thioredoxin-1/ extracellular regulated kinase/β-catenin signaling pathway mediated by β2-adrenergic receptors in chronically stressed dentate gyrus.

Abstract Source:

J Exerc Nutrition Biochem. 2019 Sep 30 ;23(3):13-21. PMID: 31743979

Abstract Author(s):

Mun-Hee Kim, Yea-Hyun Leem

Article Affiliation:

Mun-Hee Kim

Abstract:

PURPOSE: Chronic stress is a precipitating factor for depression, whereas exercise is beneficial for both the mood and cognitive process. The current study demonstrates the anti-depressive effects of regular exercise and the mechanisms linked to hippocampal neurogenesis.

METHODS: Mice were subjected to 14 consecutive days of restraint, followed by 3 weeks of treadmill running, and were then subjected to behavioral tests that included the forced swimming and Y-maze tests. Protein levels were assessed using western blot analysis and newborn cells were detected using 5-bromo-2'-deoxyuridine (BrdU).

RESULTS: Three weeks of treadmill running ameliorated the behavioral depression caused by 14 days of continuous restraint stress. The exercise regimen enhanced BrdU-labeled cells and class IIIβ-tubulin levels in the hippocampal dentate gyrus, as well as those of thioredoxin-1 (TRX-1) and synaptosomal β2-adrenergic receptors (β2-AR) under stress. In vitro experiments involving treatment with recombinant human TRX-1 (rhTRX-1) augmented the levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2), nuclear β-catenin, and proliferating cell nuclear antigens, which were previously inhibited by U0216 and FH535 (inhibitors of ERK1/2 and β-catenin/T cell factor-mediated transcription, respectively). The hippocampal neurogenesis elicited by a 7-day exercise regimen wasabolished by a selective inhibitor of β2-AR, butoxamine.

CONCLUSION: These results suggest that TRX-1-mediated hippocampal neurogenesis byβ2-AR function is a potential mechanism underlying the psychotropic effect of exercise.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.