n/a
Abstract Title:

Hydrogen peroxide/ceramide/Akt signaling axis play a critical role in the antileukemic potential of sanguinarine.

Abstract Source:

Free Radic Biol Med. 2016 Jul ;96:273-89. Epub 2016 May 3. PMID: 27154977

Abstract Author(s):

Anees Rahman, Faisal Thayyullathil, Siraj Pallichankandy, Sehamuddin Galadari

Article Affiliation:

Anees Rahman

Abstract:

Dysregulation of apoptosis is a prime hallmark of leukemia. Therefore, drugs which restore the sensitivity of leukemic cells to apoptotic stimuli are promising candidates in the treatment of leukemia. Recently, we have demonstrated that sanguinarine (SNG), a benzophenanthridine alkaloid, isolated from Sanguinaria canadensis induces ROS-dependent ERK1/2 activation and autophagic cell death in human malignant glioma cells (Pallichankandy et al., 2015; [43]). In this study, we investigated the antileukemic potential of SNG in vitro, and further examined the molecular mechanisms of SNG-induced cell death. In human leukemic cells, SNG activated apoptotic cell death pathway characterized by activation of caspase cascade, DNA fragmentation and down-regulation of anti-apoptotic proteins. Importantly, we have identified a crucial role for hydrogen peroxide (H2O2)-dependent ceramide (Cer) generation in the facilitation of SNG-induced apoptosis. Additionally, we have found that SNG inhibits Akt, a key anti-apoptotic protein kinase by dephosphorylating it at Ser(473), leading to the dephosphorylation of its downstream targets, GSK3β and mTOR. Interestingly, inhibition of Cer generation, using acid sphingomyelinase inhibitor, significantly reduced the SNG-induced Akt dephosphorylation and apoptosis, whereas, activation of Cer generation using inhibitors of acid ceramidase and glucosylceramide synthase enhanced it. Furthermore, using a group of ceramide activated protein phosphatases (CAPPs) inhibitor (calyculin A, Okadaic acid, and phosphatidic acid), the involvement of protein phosphatase 1 form of CAPP in SNG-induced Akt dephosphorylation and apoptosis was demonstrated. Altogether, these results underscore a criticalrole for H2O2-Cer-Akt signaling axis in the antileukemic action of SNG.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Apoptotic : CK(6986) : AC(6931)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.