n/a
Article Publish Status: FREE
Abstract Title:

Thymoquinone reduces ischemia and reperfusion-induced intestinal injury in rats, through anti-oxidative and anti-inflammatory effects.

Abstract Source:

Turk J Surg. 2020 Mar ;36(1):96-104. Epub 2020 Mar 18. PMID: 32637881

Abstract Author(s):

Ali Parlar, Seyfullah Oktay Arslan

Article Affiliation:

Ali Parlar

Abstract:

Objectives: The aim of the present study was to investigate the effect of thymoquinone on ischemia/reperfusion (I/R) injury at 150 min or/and 24 h of reperfusion in male Wistar Rats.

Material and Methods: The therapeutic value of thymoquinone on cellular damage caused by reactive oxygene species or inflammatory processes during intestinal ischemia/reperfusion was investigated using pharmacological function studies on smooth muscle contractile responses of acetylcholine (Ach) and KCl, along with myeloperoxidase activity, malondialdehyhde, glutathione and cytokine levels such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β in serum and ileum tissue of rats. Thymoquinone was administered at a dose of 50 mg/kg orally for three times: 30 min, 24 h and 48 h prior to the surgical procedure. Soon after reperfusion timing (150 min or 24 h), the contractility traces to KCl and acetylcholine of theileum smooth muscle were recorded through isolated organ bath.

Results: Pretreatment with thymoquinone reversed the disrupted contractility of the ileum smooth muscle at the 24 h reperfusion. Increased malondialdehyde and depleted glutathione levels and high myeloperoxidase activity determined in the ileum I/R tissue returned to reasonable amounts by pretreatment of Thymoquinone, which attenuated malondialdehyde quantity, restored glutathione level and inhibited myeloperoxidase activity. In addition, both serum and tissue TNF-α and IL-1β activities were modulated by thymoquinone at 24 h of intestinal I/R.

Conclusion: The results indicate that thymoquinone may have therapeutic value due to its immunomodulating, radical scavenging and/or antioxidant effects in intestinal I/R injury including oxidant damage mechanisms.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.