Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide.

Abstract Source:

J Toxicol Environ Health A. 2010 Jan;73(5):396-409. PMID: 20155581

Abstract Author(s):

Changsuk Moon, Hyun-Jeong Park, Youn-Hee Choi, Eun-Mi Park, Vincent Castranova, Jihee Lee Kang

Article Affiliation:

Departments of Physiology.

Abstract:

Nanoparticles are widely used in nanomedicines, including for targeted delivery of pharmacological, therapeutic, and diagnostic agents. Since nanoparticles might translocate across cellular barriers from the circulation into targeted organs, it is important to obtain information concerning the pathophysiologic effects of these particles through systemic migration. In the present study, acute pulmonary responses were examined after intraperitoneal (ip) administration of ultrafine titanium dioxide (TiO(2), 40 mg/kg) in mice at rest or in lungs primed with lipopolysaccharide (LPS, ip, 5 mg/kg). Ultrafine TiO(2) exposure increased neutrophil influx, protein levels in bronchoalveolar lavage (BAL) fluid, and reactive oxygen species (ROS) activity of BAL cells 4 h after exposure. Concomitantly, the levels of proinflammatory mediators, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and macrophage inflammatory protein (MIP)-2 in BAL fluid and mRNA expression of TNF-alpha and IL-1beta in lung tissue were elevated post ultrafine TiO(2) exposure. Ultrafine TiO(2) exposure resulted in significant activation of inflammatory signaling molecules, such as c-Src and p38 MAP kinase, in lung tissue and alveolar macrophages, and the nuclear factor (NF)-kappaB pathway in pulmonary tissue. Furthermore, ultrafine TiO(2) additively enhanced these inflammatory parameters and this signaling pathway in lungs primed with lipopolysaccharide (LPS). Contrary to this trend, a synergistic effect was found for TNF-alpha at the level of protein and mRNA expression. These results suggest that ultrafine TiO(2) (P25) induces acute lung inflammation after ip administration, and exhibits additive or synergistic effects with LPS, at least partly, via activation of oxidant-dependent inflammatory signaling and the NF-kappaB pathway, leading to increased production of proinflammatory mediators.

Study Type : Animal Study
Additional Links
Anti Therapeutic Actions : Nanotechnology : CK(70) : AC(31)
Adverse Pharmacological Actions : Inflammatory : CK(312) : AC(92)

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.