Abstract Title:

Urolithin A attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways.

Abstract Source:

Food Funct. 2020 Apr 1 ;11(4):3432-3440. Epub 2020 Apr 1. PMID: 32236173

Abstract Author(s):

Qi-An Han, Dongfang Su, Chao Shi, Peifeng Liu, Yue Wang, Beiwei Zhu, Xiaodong Xia

Article Affiliation:

Qi-An Han


Promoting cholesterol efflux from foam cells represents one of the therapeutic strategies for ameliorating atherosclerosis. Urolithin A (UA) has been shown before to attenuate ox-LDL induced endothelial dysfunction in endothelial cells with its anti-inflammatory properties. The aim of this study was to investigate whether UA could promote cholesterol efflux via modulating related microRNA (miR) and signaling pathways. RAW264.7 cells were treated with 50μg mLox-LDL to induce foam cell formation. After treatment with UA at different concentrations, intercellular and extracellular cholesterol levels were determined. Expression of Erk1/2, AMPKα and their phosphorylation forms, and SREBP1, was analyzed by western-blotting. The effect of UA on miR-33a expression and the involvement of miR-33a in cholesterol efflux regulation were also investigated. UA reduced ox-LDL induced cholesterol accumulation in macrophage cells and promoted cholesterol efflux from cells. Compared with ox-LDL treated cells, UA treatment reduced the level of phosphorylated ERK1/2, increased the expression of phosphorylated AMPKα and decreased the SREBP1 expression. Moreover, UA decreased the miR-33a expression at the transcriptional level but increased the transcriptional expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1, two genes contributing to reverse cholesterol transport. Furthermore, pre-miR-33a attenuated cholesterol efflux induced by UA. Collectively, UA promoted the reverse cholesterol transport in macrophage-derived foam cells and interfered with cholesterol metabolism possibly through regulating the miRNA-33 expression and interaction with the ERK/AMPKα/SREBP1 signaling pathway.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.