n/a
Article Publish Status: FREE
Abstract Title:

Polyphenol-enriched fraction ofL. protects selenite-induced cataract formation in the lens of Sprague-Dawley rat pups.

Abstract Source:

Mol Vis. 2019 ;25:118-128. Epub 2019 Feb 8. PMID: 30820147

Abstract Author(s):

Jung-In Choi, Jun Kim, Se-Young Choung

Article Affiliation:

Jung-In Choi

Abstract:

Purpose: As the aging population is increasing, the incidence of age-related cataract is expected to increase globally. The surgical intervention, a treatment for cataract, still has complications and is limited to developed countries. In this study, we investigated whether the polyphenol-enriched fraction of(FH) prevents cataract formation in Sprague-Dawley (SD) rat pups.

Methods: Sixty rat pups were randomly divided into six groups: CTL, Se, FH40, FH80, FH120, and Cur80. The cataract was induced with subcutaneous injection of sodium selenite (18μmol/kg bodyweight) on postnatal (P) day 10. All groups, except CTL, were injected with sodium selenite, and the FH40, FH80, and FH120 groups were given gastric intubation with FH40 mg/kg, 80 mg/kg, and 120 mg/kg on P9, P10, and P11. The Cur80 group was also given gastric intubation with curcumin 80 mg/kg on P9, P10, and P11. All rat pups were euthanized on P30.

Results: Lens morphological analysis showed that FH dose-dependently inhibited cataract formation. In the Se group, soluble proteins were insolubilized, and the gene expression of theα-, β-, and γ-crystallins was downregulated. However, FH treatment statistically significantly inhibited insolubilization of soluble proteins and downregulation of the gene expression of the α-, β-, and γ-crystallins. In the Se group, the gene and protein levels of m-calpain were downregulated, which were attenuated with FH treatment. In addition, sodium selenite injection caused reduced antioxidant enzymes (superoxide dismutase (SOD) and glutathione peroxidase (GPx)), glutathione (GSH) depletion, and malondialdehyde (MDA) production in the lens. The administration of FH inhibited sodiumselenite-induced oxidative stress in a dose-dependent manner. The mechanism of protection against oxidative stress by FH involves NF-E2-related factor (Nrf-2) and hemoxygenase-1 (HO-1). FH treatment inhibited decrease of Nrf-2 in the nucleus fraction and HO-1 in the cytosol fraction. Finally, the FH treatment protected poly (ADP)-ribose polymerase (PARP) from cleavage, determined with western blotting.

Conclusions: FH showed a preventive effect against cataract formation by inhibiting m-calpain-mediated proteolysis and oxidative stress in the lens. These results suggest that FH could be a potential anticataract agent in age-related cataract.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.