Abstract Title:

Ascorbic acid increases drug accumulation and reverses vincristine resistance of human non-small-cell lung-cancer cells.

Abstract Source:

Biochem J. 1994 Aug 1;301 ( Pt 3):759-64. PMID: 7914401

Abstract Author(s):

C D Chiang, E J Song, V C Yang, C C Chao


A human lung-cancer PC-9 subline with acquired resistance to vincristine (VCR), a chemotherapeutic agent, was established with incremental increases of the drug. The resistant PC-9 subline (PC-9/VCR) shows a 12-fold increase in resistance to VCR and a unique cross-resistance pattern: high cross-resistance to the potent VCR analogue colchicine (6.9-fold) and vinblastine (2.5-fold); lower cross-resistance to actinomycin D (1.8-fold), cisplatin (1.2-fold) and adriamycin (1.3-fold) and a sensitivity to melphalan and VP-16 which is similar to that of the parental cell line. A reduced accumulation of VCR in the resistant cells was demonstrated. Interestingly, the VCR resistance of the PC-9/VCR cell line was partially reversed by ascorbic acid, and the drug uptake was enhanced. In contrast, ascorbic acid had no effect on drug tolerance and drug accumulation was not observed in either PC-9 parental cells or known multidrug-resistant (MDR) cells, suggesting that VCR resistance in PC-9/VCR cells results essentially from reduced drug accumulation. It is worth noting that, whereas reduced drug accumulation in the PC-9/VCR cells was susceptible to modulation by ascorbic acid, the increased efflux rate characteristic of the resistant cells was not. Further, there was a higher efflux rate in resistant cells than in parental cells. DNA Southern- and RNA Northern-blot hybridization analyses indicate that PC-9/VCR cells do not contain amplified mdr genes or overexpress P-glycoprotein. In addition, the calcium-channel blocker verapamil, which acts as a competitive inhibitor of drug binding and efflux, did not affect the resistant phenotype of PC-9/VCR cells. These findings suggest an ascorbic acid-sensitive drug uptake mechanism which is important in mediating VCR resistance per se in human lung-cancer cells; this differs from the P-glycoprotein-mediated MDR mechanism.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.