Abstract Title:

1α,25 Dihydroxyvitamin D(3) enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin.

Abstract Source:

Photochem Photobiol Sci. 2012 Oct 15. Epub 2012 Oct 15. PMID: 23069805

Abstract Author(s):

Clare Gordon-Thomson, Ritu Gupta, Wannit Tongkao-On, Anthony Ryan, Gary M Halliday, Rebecca S Mason

Article Affiliation:

Department of Physiology, The Bosch Institute, The University of Sydney, NSW 2006, Australia. rebeccam@physiol.usyd.edu.au.


DNA damage induced by ultraviolet radiation is the key initiator for skin carcinogenesis since mutations may arise from the photoproducts and it also contributes to photoimmune suppression. The active vitamin D hormone, 1α,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) reduces thymine dimers, the major photoproduct found in human skin after UV exposure, and suppresses the accumulation of nitric oxide derivatives that lead to more toxic reactive nitrogen species (RNS). We examined whether other forms of DNA damage are reduced by 1,25(OH)(2)D(3), and hypothesized that photoprotection by 1,25(OH)(2)D(3) is, in part, due to the suppression of various forms of promutagenic DNA damage, including thymine dimers, through a reduction of genotoxic RNS. Different forms of UV-induced DNA damage were investigated in irradiated skin cells treated with or without 1,25(OH)(2)D(3), or inhibitors of metabolism and inducible nitric oxide synthase. Keratinocytes were also treated with nitric oxide donors in the absence of UV light. DNA damage was assessed by comet assay incorporating site specific DNA repair endonucleases, andby immunohistochemistry using antibodies to thymine dimers or 8-oxo-7,8-dihydro-2'-deoxyguanosine, and quantified by image analysis. Strand breaks in T4 endonuclease V, endonuclease IV and human 8-oxoguanine DNA glycosylase digests increased more than 2-fold in UV irradiated human keratinocytes, and were reduced by 1,25(OH)(2)D(3) treatment after UV exposure, and also by low temperature, sodium azide and an inhibitor of inducible nitric oxide synthase. Conversely, nitric oxide donors induced all three types of DNA damage in the absence of UV. We present data to show that 1,25(OH)(2)D(3) protects skin cells from at least three forms of UV-induced DNA damage, and provide further evidence to support the proposal that a reduction in RNS by 1,25(OH)(2)D(3) is a likely mechanism for its photoprotective effect against oxidative and nitrative DNA damage, as well as cyclobutane pyrimidine dimers.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Photoprotective : CK(74) : AC(27)

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.