Article Publish Status: FREE
Abstract Title:

Zeaxanthin Induces Apoptosis via ROS-Regulated MAPK and AKT Signaling Pathway in Human Gastric Cancer Cells.

Abstract Source:

Onco Targets Ther. 2020 ;13:10995-11006. Epub 2020 Oct 29. PMID: 33149614

Abstract Author(s):

Ya-Nan Sheng, Ying-Hua Luo, Shao-Bin Liu, Wan-Ting Xu, Yu Zhang, Tong Zhang, Hui Xue, Wen-Bo Zuo, Yan-Nan Li, Chang-Yuan Wang, Cheng-Hao Jin

Article Affiliation:

Ya-Nan Sheng


Background: Zeaxanthin, a carotenoid commonly found in plants, has a variety of biological functions including anti-cancer activity.

Purpose: This study aimed to investigate the potential mechanisms of zeaxanthin in human gastric cancer cells.

Methods: CCK-8 assay was used to examine the cytotoxic effect of zeaxanthin on human gastric cancer cells. Flow cytometry was used to analyse AGS cell cycle distribution and apoptosis status. Western blot analysis was used to detect the expression levels of cycle-related proteins (Cyclin A, Cyclin B1, CDK1/2, p21, and p27), apoptosis-related proteins (Bcl-2, Bad, caspase-3, PARP), MAPK, AKT, STAT3, and NF-κB.

Results: CCK-8 assay showed that zeaxanthin has obvious cytotoxic effects on 12 types of human gastric cancer cells, but no obvious toxic effect on normal cells. In addition, flow cytometry and Western blotting results showed that zeaxanthin induces apoptosis by reducing mitochondrial membrane potential; increasing Cytochrome C, Bax, cleaved-caspase-3 (cle-cas-3), and cleaved-PARP (cle-PARP) expression levels; and decreasing Bcl-2, pro-caspase-3 (pro-cas-3), and pro-PARP expression levels. Additionally, zeaxanthin caused cell cycle arrest at the G2/M phase by increasing the levels of p21 and p27 and reduced the levels of AKT, Cyclin A, Cyclin B1, and Cyclin-dependent kinase 1/2 (CDK1/2). Furthermore, after zeaxanthin treatment, the expression levels of reactive oxygen species (ROS), p-JNK, p-p38, and I-κB increased, and the expression levels of p-ERK, p-AKT, STAT3, and NF-κB decreased. However, the ROS scavenger N-acetylcysteine (NAC) and MAPK inhibitors inhibited zeaxanthin-induced apoptosis, and under the action of zeaxanthin, MAPK regulated NF-κB and STAT3, and reduced their protein expression levels.

Conclusion: Zeaxanthin has a potential effect against gastric cancer cells through the ROS-mediated MAPK, AKT, NF-κB, and STAT3 signaling pathways, and it is expected to become a new drug for the treatment of human gastric cancer.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.