n/a
Article Publish Status: FREE
Abstract Title:

Sinomenine Hydrochloride Inhibits Human Glioblastoma Cell Growth through Reactive Oxygen Species Generation and Autophagy-Lysosome Pathway Activation: An In Vitro and In Vivo Study.

Abstract Source:

Int J Mol Sci. 2017 Sep 11 ;18(9). Epub 2017 Sep 11. PMID: 28891980

Abstract Author(s):

Yumao Jiang, Yue Jiao, Zhiguo Wang, Tao Li, Yang Liu, Yujuan Li, Xiaoliang Zhao, Danqiao Wang

Article Affiliation:

Yumao Jiang

Abstract:

Glioblastoma is the most common malignant primary brain tumor, and it is one of the causes of cancer fatality in both adult and pediatric populations. Patients with glioblastoma require chemotherapy after surgical resection and radiotherapy. Therefore, chemotherapy constitutes a viable approach for the eradication of glioblastoma cells. In this study, the anti-tumor activity of sinomenine hydrochloride (SH) was evaluated in U87 and SF767 cells in vitro and in vivo. The results showed that SH potently inhibited U87 and SF767 cell viability and did not cause caspase-dependent cell death, as demonstrated by the absence of significant early apoptosis and caspase-3 cleavage. Instead, SH activated an autophagy-mediated cell death pathway, as indicated by the accumulated microtubule-associated protein light chain 3B (LC3B)-II, triggered autophagic flux and enhanced cell viability after pretreatment with autophagy inhibitors. SH-mediated autophagy in the two cell lines was implicated in reactive oxygen species (ROS) generation, protein kinase B (Akt)-mammalian target of rapamycin (mTOR) pathway suppression and c-Jun NH2-terminal kinase (JNK) pathway activation. The ROS antioxidant-acetylcysteine (NAC), the Akt-specific activator insulin-like growth factor-1 (IGF-1) and the JNK-specific inhibitor SP600125 attenuated SH-induced autophagy. Moreover, ROS activated autophagy via the Akt-mTOR and JNK pathways. Additionally, SH treatment may promote lysosome biogenesis through activating transcription factor EB (TFEB). The in vivo study found that SH effectively suppressed glioblastoma growth without exhibiting significant toxicity. In conclusion, our findings reveal a novel mechanism of action of SH in cancer cells via the induction of autophagy through ROS generation and autophagy-lysosome pathway activation; these findings also supply a new potential therapeutic agent for the treatment of human glioblastoma.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.