Abstract Title:

In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties.

Abstract Source:

Biochem Pharmacol. 1998 Jun 15;55(12):1955-62. PMID: 9714315

Abstract Author(s):

M M Chan, H I Huang, M R Fenton, D Fong

Article Affiliation:

Department of Biomedical Sciences, Pennsylvania College of Podiatric Medicine, Philadelphia 19107, USA. [email protected]

Abstract:

Curcumin is a naturally occurring, dietary polyphenolic phytochemical that is under preclinical trial evaluation for cancer preventive drug development and whose working pharmacological actions include anti-inflammation. With respect to inflammation, in vitro, it inhibits the activation of free radical-activated transcription factors, such as nuclear factor kappaB (NFkappaB) and AP-1, and reduces the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF alpha), interleukin-1beta (IL-1beta), and interleukin-8. Inducible nitric oxide synthase (iNOS) is an inflammation-induced enzyme that catalyzes the production of nitric oxide (NO), a molecule that may lead to carcinogenesis. Here, we report that in ex vivo cultured BALB/c mouse peritoneal macrophages, 1-20 microM of curcumin reduced the production of iNOS mRNA in a concentration-dependent manner. Furthermore, we demonstrated that, in vivo, two oral treatments of 0.5 mL of a 10-microM solution of curcumin (92 ng/g of body weight) reduced iNOS mRNA expression in the livers of lipopolysaccharide(LPS)-injected mice by 50-70%. Although many hold that curcumin needs to be given at dosages that are unattainable through diet to produce an in vivo effect, we were able to obtain potency at nanomoles per gram of body weight. This efficacy is associated with two modifications in our preparation and feeding regimen: 1) an aqueous solution of curcumin was prepared by initially dissolving the compound in 0.5 N NaOH and then immediately diluting it in PBS; and 2) mice were fed curcumin at dusk after fasting. Inhibition was not observed in mice that were fed ad lib., suggesting that food intake may interfere with the absorption of curcumin.

Study Type : Animal Study
Additional Links

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.