Search for Abstracts using Keywords

51,427 Abstracts & Growing Daily. Sourced from the US National Library of Medicine.


Curcumin inhibits integrin (alpha6beta4)-dependent breast cancer cell motility and invasion.

Curcumin, a polyphenol natural product isolated from the rhizome of the plant Curcuma longa, has emerged as a promising anticancer therapeutic agent. However, the mechanism by which curcumin inhibits cancer cell functions such as cell growth, survival, and cell motility is largely unknown. We explored whether curcumin affects the function of integrin alpha(6)beta(4), a laminin adhesion receptor with an established role in invasion and migration of cancer cells. Here we show that curcumin significantly reduced alpha(6)beta(4)-dependent breast cancer cell motility and invasion in a concentration-dependent manner without affecting apoptosis in MDA-MB-435/beta4 (beta(4)-integrin transfectants) and MDA-MB-231 breast cancer cell lines. Further, curcumin selectively reduced the basal phosphorylation of beta(4) integrin (Y1494), which has been reported to be essential in mediating alpha(6)beta(4)-dependent phosphatidylinositol 3-kinase activation and cell motility. Consistent with this finding, curcumin also blocked alpha(6)beta(4)-dependent Akt activation and expression of the cell motility-promoting factor ENPP2 in MDA-MB-435/beta4 cell line. A multimodality approach using curcumin in combination with other pharmacologic inhibitors of alpha(6)beta(4) signaling pathways showed an additive effect to block breast cancer cell motility and invasion. Taken together, these findings show that curcumin inhibits breast cancer cell motility and invasion by directly inhibiting the function of alpha(6)beta(4) integrin, and suggest that curcumin can serve as an effective therapeutic agent in tumors that overexpress alpha(6)beta(4).

Cancer Prev Res (Phila). 2008 Oct;1(5):385-91. PMID: 19138983


Review: Anti cancer effects of curcumin.

ABSTRACT: Increasing knowledge on the cell cycle deregulations in cancers has promoted the introduction of phytochemicals, which can either modulate signaling pathways leading to cell cycle regulation or directly alter cell cycle regulatory molecules, in cancer therapy. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this respect, cell cycle regulation and its modulation by curcumin are gaining widespread attention in recent years. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane), a relatively non-toxic plant derived polyphenol. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. In the present review we discuss how alterations in the cell cycle control contribute to the malignant transformation and provide an overview of how curcumin targets cell cycle regulatory molecules to assert anti-proliferative and/or apoptotic effects in cancer cells. The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation. Taken together, this review seeks to summarize the unique properties of curcumin that may be exploited for successful clinical cancer prevention.

Cell Div. 2008;3:14. Epub 2008 Oct 3. PMID: 18834508


Curcumin may play a therapeutic role in diseases of the bone associated with osteoclastogenesis and bone lysis.

PURPOSE: Curcumin is a natural polyphenolic derogate extracted from spice turmeric, exhibiting anti-inflammatory and chemopreventive activities. It was described to interact with the signalosome-associated kinases and the proteasome-ubiquitin system, which both are involved in the osteoclastogenesis. Thus, we hypothesized that curcumin could diminish osteoclast differentiation and function.METHODS: For the experiments considering osteoclast differentiation and resorptional activities, preosteoclasts were cultured for 4 weeks and treated with curcumin at subapoptotic dosages. Derived mature osteoclasts were identified as large, multinucleated cells with expression of tartrate-resistant acid phosphatase activity. Formation of resorption lacunae, a hallmark of osteoclast activity, was quantified using dentine pits and light microscopy. The signaling pathways were examined by ELISA-based methods and by immunoblotting.RESULTS: Both 1 and 10 microM curcumin abrogated osteoclast differentiation (by 56 and 81%) and function (by 56 and 99%) (P

J Cancer Res Clin Oncol. 2009 Feb;135(2):173-9. Epub 2008 Sep 3. PMID: 18766375


Curcumin decreases specificity protein expression in bladder cancer cells, indicating it may have anti-cancer properties.

Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 to 25 micromol/L curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Because expression of survivin, VEGF, and VEGFR1 are dependent on specificity protein (Sp) transcription factors, we also investigated the effects of curcumin on Sp protein expression as an underlying mechanism for the apoptotic and antiangiogenic activity of this compound. The results show that curcumin induced proteasome-dependent down-regulation of Sp1, Sp3, and Sp4 in 253JB-V and KU7 cells. Moreover, using RNA interference with small inhibitory RNAs for Sp1, Sp3, and Sp4, we observed that curcumin-dependent inhibition of nuclear factor kappaB (NF-kappaB)-dependent genes, such as bcl-2, survivin, and cyclin D1, was also due, in part, to loss of Sp proteins. Curcumin also decreased bladder tumor growth in athymic nude mice bearing KU7 cells as xenografts and this was accompanied by decreased Sp1, Sp3, and Sp4 protein levels in tumors. These results show for the first time that one of the underlying mechanisms of action of curcumin as a cancer chemotherapeutic agent is due, in part, to decreased expression of Sp transcription factors in bladder cancer cells.

Cancer Res. 2008 Jul 1;68(13):5345-54. PMID: 18593936


Curcumin prevents progestin-induced breast cancer cell promotion.

OBJECTIVE: Recent clinical trials show that women who receive combined estrogen and progestin hormone therapy (HT) have a higher risk of breast cancer than women who receive estrogen alone or placebo. We have shown that progestins stimulate expression of vascular endothelial growth factor (VEGF), a potent angiogenic factor, in human breast cancer cells that express the progesterone receptors and mutant p53 protein. Because increased levels of VEGF promote tumor progression, compounds that prevent progestin-induced expression of VEGF could be clinically useful. The objective of this study was to examine whether the polyphenol compound curcumin has the capacity to block progestin-induced secretion of VEGF from T47-D human breast cancer cells.DESIGN: The estrogen and progesterone receptor containing T47-D human breast cancer cells was exposed to 10 nM progesterone or synthetic progestins and varying concentrations of curcumin to determine whether curcumin blocks progestin-dependent production of VEGF from tumor cells.RESULTS: Curcumin (0.001-10 microM for 18 h) reduced medroxyprogesterone acetate (MPA)-induced secretion of VEGF from T47-D cells in a dose-dependent manner. Secretion of VEGF from cells treated with progesterone or progestins other than MPA was unaffected by curcumin.CONCLUSIONS: MPA is the most widely used progestin in HT. Curcumin may therefore provide a clinically useful tool for the suppression of MPA-induced elaboration of VEGF by tumor cells. We propose therefore that clinical trials to assess the beneficial effects of curcumin in postmenopausal women are warranted.

Menopause. 2008 May-Jun;15(3):570-4. PMID: 18467956


Curcumin is a radiosensitizer of human cervical tumor cells.

Cervical cancer is the second most common malignancy among women worldwide and is highly radioresistant, often resulting in local treatment failure. For locally advanced disease, radiation is combined with low-dose chemotherapy; however, this modality often leads to severe toxicity. Curcumin, a polyphenol extracted from rhizomes of the plant Curcuma longa, is a widely studied chemopreventive agent that was shown to have a low toxicity profile in three human clinical trials. Here, we show that pretreatment of two cervical carcinoma cell lines, HeLa and SiHa, with curcumin before ionizing radiation (IR) resulted in significant dose-dependent radiosensitization of these cells. It is noteworthy that curcumin failed to radiosensitize normal human diploid fibroblasts. Although in tumor cells, curcumin did not significantly affect IR-induced activation of AKT and nuclear factor-kappaB, we found that it caused a significant increase in the production of reactive oxygen species, which further led to sustained extracellular signal-regulated kinase (ERK) 1/2 activation. The antioxidant compound N-acetylcysteine blocked the curcumin-induced increased reactive oxygen species (ROS), sustained activation of ERK1/2, and decreased survival after IR in HeLa cells, implicating a ROS-dependent mechanism for curcumin radiosensitivity. Moreover, PD98059 (2'-amino-3'-methoxyflavone)-, PD184352- [2-(2-chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide], and U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophynylthio)butadiene]-specific inhibitors of mitogen-activated protein kinase kinase 1/2 (MEK1/2) blocked curcumin-mediated radiosensitization, demonstrating that the sustained ERK1/2 activation resulting from ROS generation leads to curcumin-mediated radiosensitization. Together, these results suggest a novel mechanism for curcumin-mediated radiosensitization involving increased ROS and ERK1/2 activation and suggest that curcumin application (either systemically or topically) may be an effective radiation modifying modality in the treatment of cervical cancer.

Mol Pharmacol. 2008 May;73(5):1491-501. Epub 2008 Feb 5. PMID: 18252805


Curcumin exhibits anti-breast cancer properties.

An important characteristic of tumors is that they at some point in their development overcome the surveillance of the immune system. Tumors secrete exosomes, multivesicular bodies containing a distinct set of proteins that can fuse with cells of the circulating immune system. Purified exosomes from TS/A breast cancer cells, but not non-exosomal fractions, inhibit (at concentrations of nanograms per ml protein) IL-2-induced natural killer (NK) cell cytotoxicity. The dietary polyphenol, curcumin (diferuloylmethane), partially reverses tumor exosome-mediated inhibition of natural killer cell activation, which is mediated through the impairment of the ubiquitin-proteasome system. Exposure of mouse breast tumor cells to curcumin causes a dose-dependent increase in ubiquitinated exosomal proteins compared to those in untreated TS/A breast tumor cells. Furthermore, exosomes isolated from tumor cells pretreated with curcumin have a much attenuated inhibition of IL-2 stimulated NK cell activation. Jak3-mediated activation of Stat5 is required for tumor cytotoxicity of IL-2 stimulated NK cells. TS/A tumor exosomes strongly inhibit activation of Stat5, whereas the tumor exosomes isolated from curcumin-pretreated tumor cells have a lowered potency for inhibition of IL-2 stimulated NK cell cytotoxicity. These data suggest that partial reversal of tumor exosome-mediated inhibition of NK cell tumor cytotoxicity may account for the anti-cancer properties of curcumin.

Biochim Biophys Acta. 2007 Jul;1773(7):1116-23. Epub 2007 May 1. PMID: 17555831


A variety of natural substances may function as novel anticancer agents, proteasome inhibitors and chemosensitizers.

A major challenge in cancer therapy is tumor drug resistance. To overcome it, it is essential to understand the mechanisms and identify the molecules involved, so that they can be specifically targeted in combination therapies. The proteasome is such a validated target: it plays a key role in cancer cell proliferation, inhibition of chemotherapy-induced apoptosis and drug resistance development. Bortezomib (Velcade, PS-341) was the first proteasome inhibitor to receive regulatory approval from the US Food and Drug Administration for the treatment of multiple myeloma. Clinical combination trials have demonstrated a chemo-sensitizing effect of bortezomib on conventional agents in hematological malignancies and some solid tumors such as androgen-independent prostate and ovarian cancer. Although generally well-tolerated, bortezomib still generates toxicity which underscores the need for less toxic proteasome inhibitors. Several naturally occurring products, such as green tea polyphenols and the antibiotic lactacystin, have been shown to be potent proteasome inhibitors. Significantly, green tea polyphenols, as well as several flavonoids such as genistein, curcumin and resveratrol, have also been shown to have chemo-sensitizing properties in prostate, breast, hepatic, and lung tumors. Further studies on natural proteasome inhibitors as chemo-sensitizers could lead to identification of more potent and less toxic compounds that could be used in combination therapies for drug-resistant tumors.

Drug Resist Updat. 2006 Dec;9(6):263-73. Epub 2007 Jan 2. PMID: 17197231


Ellagic acid and curcumin may inhibit cancer through preventing the over-expression of glutathione S-transferases.

Glutathione S-transferases (GSTs) are multifunctional detoxification proteins that protect the cell from electrophilic compounds. Overexpression of GSTs in cancer results in resistance to chemotherapeutic agents and inhibition of the over expressed GST has been suggested as an approach to combat GST-induced resistance. The inhibition of human recombinant GSTs by natural plant products was investigated in this study. Using 1-chloro-2,4 dinitrobenzene (CDNB) as a substrate, ellagic acid and curcumin were shown to inhibit GSTs A1-1, A2-2, M1-1, M2-2 and P1-1 with IC(50) values ranging from 0.04 to 5 microM whilst genistein, kaempferol and quercetin inhibited GSTs M1-1 and M2-2 only. The predominant mode of inhibition with respect to the G and H-sites were mixed inhibition and uncompetitive to a lesser extent. The K(i) (K(i)(')) values for ellagic acid and curcumin with respect to GSH and CDNB were in the range 0.04-6 microM showing the inhibitory potency of these polyphenolic compounds. Ellagic acid and curcumin also showed time- and concentration-dependent inactivation of GSTs M1-1, M2-2 and P1-1 with curcumin being a more potent inactivator than ellagic acid. These results facilitate the understanding of the interaction of human GSTs with plant polyphenolic compounds with regards to their role as chemomodulators in cases of GST-overexpression in malignancies.

Food Chem Toxicol. 2007 Feb;45(2):286-95. Epub 2006 Aug 30. PMID: 17046132


Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells.

Curcumin (diferuloylmethane), a polyphenol natural product of the plant Curcuma longa, is undergoing early clinical trials as a novel anticancer agent. However, the anticancer mechanism of curcumin remains to be elucidated. Here we show that curcumin inhibited growth of rhabdomyosarcoma cells (Rh1 and Rh30) (IC50 = 2-5 microM) and arrested cells in G1 phase of the cell cycle. Curcumin also induced apoptosis and inhibited the basal or type I insulin-like growth factor-induced motility of the cells. At physiological concentrations (2.5 microM), curcumin rapidly inhibited phosphorylation of the mammalian target of rapamycin (mTOR) and its downstream effector molecules, p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), in a panel of cell lines (Rh1, Rh30, DU145, MCF-7 and Hela). Curcumin also inhibited phosphorylation of Akt in the cells, but only at high concentrations (>40 microM). The data suggest that curcumin may execute its anticancer activity primarily by blocking mTOR-mediated signaling pathways in the tumor cells.

Int J Cancer. 2006 Aug 15;119(4):757-64. PMID: 16550606


Curcumin displays therapeutic activity in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction.

BACKGROUND: The world suffers a tsunami of chronic diseases, and a typhoon of acute illnesses, many of which are associated with the inappropriate or exaggerated activation of genes involved in inflammation. Finding therapeutic agents which can modulate the inflammatory reaction is the highest priority in medical research today. Drugs developed by the pharmaceutical industry have thus far been associated with toxicity and side effects, which is why natural substances are of increasing interest.METHODS: A literature search (PubMed) showed almost 1500 papers dealing with curcumin, most from recent years. All available abstracts were read. Approximately 300 full papers were reviewed.RESULTS: Curcumin, a component of turmeric, has been shown to be non-toxic, to have antioxidant activity, and to inhibit such mediators of inflammation as NFkappaB, cyclooxygenase-2 (COX-2), lipooxygenase (LOX), and inducible nitric oxide synthase (iNOS). Significant preventive and/or curative effects have been observed in experimental animal models of a number of diseases, including arteriosclerosis, cancer, diabetes, respiratory, hepatic, pancreatic, intestinal and gastric diseases, neurodegenerative and eye diseases.CONCLUSIONS: Turmeric, an approved food additive, or its component curcumin, has shown surprisingly beneficial effects in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction. There is ample evidence to support its clinical use, both as a prevention and a treatment. Several natural substances have greater antioxidant effects than conventional vitamins, including various polyphenols, flavonoids and curcumenoids. Natural substances are worth further exploration both experimentally and clinically.

Horm Behav. 1978 Feb;10(1):54-60. PMID: 16387899


A number of plant polyphenols have chemosensitizing and radiosensitizing activity.

The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intently for their potential chemopreventive properties and are pharmacologically safe. These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities. How these polyphenols protect normal cells and sensitize tumor cells to treatment is discussed in this review.

Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1630-47. PMID: 16356126


Curcumin suppresses protein kinase C and nuclear oncogene expression associated with cancer progression.

Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C (PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and IkappaB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)kappaB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction pathways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins play a pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Arch Pharm Res. 2004 Jul;27(7):683-92. PMID: 15356994


Six dietary constituents inhibit nicotine-DNA adduct formation.

Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine] is a major alkaloid in tobacco products and has proven to be a potential genotoxic compound. Many natural dietary products can suppress the DNA adduction, and hence act as inhibitors of cancer. In this study, we investigated the inhibitory effects of curcumin, garlic squeeze, grapeseed extract, tea polyphenols, vitamin C, and vitamin E on nicotine-DNA adduction in vivo using an ultrasensitive method of accelerator mass spectrometry (AMS). The results demonstrated that all the dietary constituents induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the control. The reduction rate reached about 50% for all agents, except garlic squeeze (40%), even at its highest dose level. Amongst the six agents, grapeseed extract exhibited the strongest inhibition to the DNA adduct formation. Therefore, we may arrive at a point that these dietary constituents are beneficial to prevent the harmful adduct formation, and thus to block the potential carcinogenesis induced by nicotine.

Food Chem Toxicol. 2003 Jul;41(7):1045-50. PMID: 12804663


Curcumin may prevent ferric nitrilotriacetate (Fe-NTA) induced toxicity and cancer.

A number of investigations have implicated the involvement of free radicals in various pathogenic process including initiation/promotion stages of carcinogenesis and antioxidants have been considered to be a protective agent for this reason. An iron chelate, ferric nitrilotriacetate (Fe-NTA), is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of hydrogen peroxide-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. The latter is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA-induced toxicity, which could be mitigated by antioxidants. In this study, we therefore investigated the effect of curcumin, a polyphenolic compound from Curcuma longa for a possible protection against lipid peroxidation and DNA damage induced by Fe-NTA and hydrogen peroxide in vitro. Incubation of renal microsomal membrane/and or calf thymus DNA with hydrogen peroxide (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.2-and 5.6-fold, respectively, as compared to saline treated control (P

J Cutan Pathol. 2009 Oct;36(10):1053-62. Epub 2009 Jan 27. PMID: 12616605


Curcumin inhibits Helicobacter pylori.

BACKGROUND: Curcumin, a polyphenolic chemical constituent derived from turmeric (Curcuma longa), has been shown to prevent gastric and colon cancers in rodents. Many mechanisms have been proposed for the chemopreventative effects, although the effect of curcumin on the growth of Helicobacter pylori has not been reported. H. pylori is a Group 1 carcinogen and is associated with the development of gastric and colon cancer.MATERIALS AND METHODS: A methanol extract of the dried powdered turmeric rhizome and curcumin were tested against 19 strains of H. pylori, including 5 cagA+ strains.RESULTS: Both the methanol extract and curcumin inhibited the growth of all strains of H. pylori in vitro with a minimum inhibitory concentration range of 6.25-50 micrograms/ml.CONCLUSION: These data demonstrate that curcumin inhibits the growth of H. pylori cagA+ strains in vitro, and this may be one of the mechanisms by which curcumin exerts its chemopreventative effects.

Anticancer Res. 2002 Nov-Dec;22(6C):4179-81. PMID: 12553052


Curcumin inhibits growth and sensitizes ovarian cancer cells to cisplatin-mediated killing.

The polyphenolic compounds curcumin and quercetin increased sensitivity of ovarian cancer cells (CAOV3 and SKOV3) to cisplatin. The effect was obtained when the compounds were added simultaneously with cisplatin, as well as when they were added 24 h before. High serum levels of certain cytokines, for example interleukin-6 (IL-6), have been associated with poor prognosis and cisplatin resistance in various forms of cancer. Furthermore, it has been hypothesized that cytokines may increase proliferation, metastasis, and stimulate production of detoxification enzymes and multi-drug resistant proteins. Curcumin inhibits the production of many cytokines. The two ovarian cell lines differ significantly in IL-6 production, and correspondingly the high producer, CAOV3, was less susceptible to cisplatin. Curcumin inhibited the production of IL-6 in this cell suggesting that one of the mechanisms for synergy between cisplatin and curcumin was by reducing the autologous production of IL-6. However, the synergy was also observed in the low IL-6 producer, SKOV3, indicating that the action was most probably a result of multiple targeting. In sum, this study suggests that the compounds, curcumin and quercetin, potentially may be useful for enhancing drug sensitivity in certain cancer.

Carcinogenesis. 1982;3(11):1331-8. PMID: 12447990


Curcumin, EGCG and resveratrol inhibit inflammation.

A wide array of phenolic substances, particularly those present in edible and medicinal plants, have been reported to possess substantial anticarcinogenic and antimutagenic activities. The majority of naturally occurring phenolics retain antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activity. Cyclooxygenase-2 (COX-2) inducible and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. Improper up-regulation of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory disorders. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activities are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. Examples are curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), the green tea polyphenol epigallocatechin gallate (EGCG), and resveratrol from grapes (Vitis vinifera, Vitaceae) that strongly suppress tumor promotion. Recent studies have demonstrated that eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) is involved in regulation of COX-2 and iNOS expression. Several chemopreventive phytochemicals have been shown to inhibit COX-2 and iNOS expression by blocking improper NF-kappa B activation. Multiple lines of compelling evidence indicate that extracellular-regulated protein kinase and p38 mitogen-activated protein kinase are key elements of the intracellular signaling cascades responsible for NF-kappa B activation in response to a wide array of external stimuli. Curcumin, EGCG and resveratrol have been shown to suppress activation of NF-kappa B. One of the plausible mechanisms underlying inhibition of NF-kappa B activation by aforementioned phytochemicals involves repression of degradation of the inhibitory unit I kappa B alpha, which hampers subsequent nuclear translocation of the functionally active subunit of NF-kappa B.

Mutat Res. 2001 Sep 1;480-481:243-68. PMID: 11506818


Curcumin inhibits lipoxygenase, indicating it possesses anti-inflammatory and anti-cancer properties.

Many lipoxygenase inhibitors including curcumin are currently being studied for their anti-carcinogenic properties. Curcumin is a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of the plant Curcuma longa that possesses anti-inflammatory properties and inhibits cancer formation in mice. Recently it was shown that the soybean lipoxygenase L1 catalyzed the oxygenation of curcumin and that curcumin can act as a lipoxygenase substrate. In the current study, we investigated the fate of curcumin when used as a soybean lipoxygenase L3 substrate. By use of X-ray diffraction and mass spectrometry, we found an unoccupied electron mass that appears to be an unusual degradation product of curcumin (4-hydroxyperoxy-2-methoxyphenol) located near the soybean L3 catalytic site. Understanding how curcumin inhibits lipoxygenase may help in the development of novel anti-cancer drugs used for treatment where lipoxygenases are involved.

Int J Mol Med. 2000 Nov;6(5):521-6. PMID: 11029517


Resveratrol is an inducer of multiple pathways of cancer cell death.

Cancers are the largest cause of mortality and morbidity in industrialized countries. In the field of the medicinal chemistry of natural products, numerous studies have reported interesting properties of trans-resveratrol as a chemopreventing agent against cancers, inflammation, and viral infection. Tumor growth inhibition has been linked to the ability of resveratrol to arrest cell cycle progression and to trigger cell death. This review focuses on the pathways that mediate resveratrol-induced cell death. Resveratrol impacts on the mitochondrial functions (respiratory chain, oncoproteins, gene expression, etc), in which p53 protein can be involved and its acetylated or phosphorylated forms. This polyphenol also affects death receptor distribution in ceramide-enriched membrane platforms which serve to trap and cluster receptor molecules, and facilitates the formation of a death-inducing signaling complex in the cell. To induce apoptosis, resveratrol also activates the ceramide / sphingomyelin pathway, which promotes ceramide generation and the downstream activation of kinase cascades. Resveratrol can activate alternative pathways to cell death such as those leading to autophagy, senescence or mitotic catastrophe. Furthermore, numerous attempts have been made using resveratrol analogs to improve the molecule's ability to block cell proliferation and induce cell death. Moreover, structural modification of natural phenolics is expected to produce analogs that may be useful tools to study the structure-activity relationships. Lastly, in various cancer types, resveratrol behaves as a chemosensitizer that lowers the threshold of cell death induction by classical anticancer agents and counteracts tumor cell chemoresistance.

Curr Med Chem. 2011 Feb 3. Epub 2011 Feb 3. PMID: 21291372


Resveratrol exhibits anti-proliferative effects against breast cancer cells.

Resveratrol is a grape polyphenol with cancer preventative activities in tissue culture and animal model studies. Potential of resveratrol as a broad-based chemopreventive agent have been questioned by its limited bioavailability. The bioefficacy of resveratrol was compared with its derivatives, triacetyl-resveratrol (trans-3,5,4'-triacetylstilbene) and trimethoxy-resveratrol (trans-3,5,4'-trimethoxystilbene) in both estrogen receptor-α (ERα)-positive MCF-7 and ERα-negative MDA-MB-231 breast cancer cells. Binding to integrin αvβ3 and control of cell proliferation and p53 were chosen as targets for comparative analysis using an in silico and biochemical approach.Resveratrol and triacetyl-resveratrol interacted avidly and specifically with integrin αvβ3 through binding at the site targeted by the high affinity cyclic Arg-Gly-Asp (RGD) peptide. In contrast, binding of trimethoxy-resveratrol to this site was substantially less robust. Moreover, the different stilbenes also elicited diverse cellular and signaling responses in MCF-7 and MDA-MB-231 cells, as evidenced by analysis of colony formation, cell proliferation, cell cycle phase transition, the extent of phosphorylation of p53 at Ser15 and p53-inducible proteins, p21 and p53R2, respectively. Further, stilbene-elicited signaling cascade leading to p53 activation was examined in MCF-7 cells and results showed that resveratrol and triacetyl-resveratrol induced both ERK and p38 phosphorylation, whereas only marginal changes in state of phosphorylation in these two kinases were observed in trimethoxy-resveratrol-treated cells. Taken together, these results support that resveratrol and triacetyl-resveratrol regulate proliferation and gene expression in breast cancer cells by utilizing largely similar signaling molecules and pathways and cellular events, which appear quite distinct from those targeted by trimethoxy-resveratrol.

Int J Cancer. 2011 Jan 10. Epub 2011 Jan 10. PMID: 21225623


Resveratrol exhibits anti-inflammatory properties.

Resveratrol (trans-3,4',5-trihydroxystilbene) is one of nonflavonoid polyphenolic phytoalexins found in various plant species, a number of which are components of human diet including grapes and red wines. Resveratrol has exerted several beneficial effects with anti-inflammation, cardioprotection and cancer chemoprevention. However, its mechanisms of action are not completely understood. In this study, we investigated effects of resveratrol on inflammatory gene expression in interferon (IFN)-γ alone-stimulated macrophages and proposed a molecular basis underlying the action. Resveratrol inhibited IFN-γ-induced production of nitric oxide (NO), IFN-γ-inducible protein-10 (IP-10), or the monokine induced by IFN-γ (MIG) in RAW 264.7 macrophages and also that of NO in primary macrophagesderived from bone marrows of C3H/HeJ (toll-like receptor-4(-/-)) mice. Moreover, resveratrol diminished IFN-γ-induced protein levels of inducible NO synthase (iNOS), attenuated mRNA levels of iNOS, IP-10 or MIG as well as inhibited IFN-γ-induced promoter activity of iNOS gene, indicating that thephytoalexin could down-regulate inflammatory genes at the transcription level. To understand a mechanism of the action, we tested resveratrol could affect the signal transducers and activation of transcription-1 (STAT-1), a pivotal transcription factor in IFN-γ-induced expression of inflammatory genes. Resveratrol inhibited IFN-γ-induced transcriptional activity of STAT-1 in macrophages and also IFN-γ-induced Tyr(701) or Ser(727) phosphorylation of STAT-1. We then focused on protein kinases upstream STAT-1 phosphorylation. Resveratrol inhibited IFN-γ-induced activation of Janus kinase-2 (JAK-2) and also the extracellular signal-regulated kinase, in which JAK-2 was more sensitive. Taken together, this study proposes a new mechanism of resveratrol, blocking JAK/STAT-1 pathway that controls inflammatory responses in IFN-γ-activated macrophages.

J Nutr Biochem. 2010 Dec 27. Epub 2010 Dec 27. PMID: 21189227


Resveratrol induces growth arrest and programmed cell death in prostate cancer cells.

BACKGROUND: Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol.METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin) and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM) induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and inhibition of cyclin D1 by resveratrol.CONCLUSION/SIGNIFICANCE: These data suggest that FOXO transcription factors mediate anti-proliferative and pro-apoptotic effects of resveratrol, in part due to activation of extrinsic apoptosis pathway.

PLoS One. 2010;5(12):e15288. Epub 2010 Dec 14. PMID: 21179458


Resveratrol may reduce prostate-specific antigen by inhibiting androgen receptor

Androgen receptor (AR) is a ligand-dependent transcription factor and plays a key role in the development of prostate cancer. Resveratrol, a polyphenolic compound, inhibits AR function and reduces the level of prostate-specific antigen (PSA), a notable target gene of AR. Here, we investigated the mechanisms by which resveratrol inhibits AR function. Although the protein levels of AR were decreased by resveratrol treatment for 24h, the decrease could not fully account for the suppression of AR function. The total and the nuclear AR levels were not affected after incubation with 10μM resveratrol for 3h, whereas resveratrol inhibited the binding of AR to the enhancer region of PSA and decreased the acetylation of AR even at this early phase. Inhibition of transcription by resveratrol was weaker in the AR acetylation site mutant than in the wild-type. In later phase (24h) after incubation with resveratrol, the ligand-induced nuclear accumulation of AR was markedly decreased by resveratrol. These data show that resveratrol inhibits DNA binding of AR, presumably by decreasing its level of acetylation and suggest that acetylation of AR is involved in its accumulation in thenucleus.

J Steroid Biochem Mol Biol. 2011 Jan;123(1-2):65-70. Epub 2010 Nov 10. PMID: 21073951


Resveratrol inhibited the proliferation of pancreatic cancer cells by inducing programmed cell death.

To investigate resveratrol, one of the food derived polyphenols that might be partially responsible for the beneficial effect on cancer, the in vitro antitumor activity of resveratrol against pancreatic cancer cell lines (PANC-1, BxPC-3 and AsPC-1) was examined, together with the mechanisms involved. The effects of resveratrol on the growth inhibition, apoptosis and cell cycle were assayed. The activity of caspases and the expression of Bcl-2, Bcl-xL, XIAP and Bax protein were detected. The results showed that resveratrol inhibited the proliferation of pancreatic cancer cells in a dose- and time-dependent manner. Resveratrol inhibited the cell growth of PANC-1, BxPC-3 and AsPC-1 cells with IC(50) values of 78.3± 9.6 μmol/L, 76.1 ± 7.8 μmol/L and 123.1 ± 6.5 μmol/L at 48 h, respectively. Incubation of pancreatic cancer cells with resveratrol resulted in cell apoptosis and cell cycle arrests. Resveratrol induced activation of caspases. Simultaneously, resveratrol regulated the expression of the antiapoptotic proteins Bcl-2, Bcl-xL and XIAP and the proapoptotic protein Bax. PANC-1 and BxPC-3 cells were more chemosensitive to resveratrol than AsPC-1 cells. In conclusion, resveratrol inhibited the proliferation of pancreatic cancer cells by inducing apoptotic cell death. There was different sensitivity to resveratrol in different pancreatic cancer cell lines.

Phytother Res. 2010 Nov;24(11):1637-44. PMID: 21031621


Resveratrol, a red wine polyphenol, suppresses pancreatic cancer.

The anticancer effects of red wine have attracted considerable attention. Resveratrol (3,5,4'-trihydroxy-trans -stilbene) is a well-known polyphenolic compound of red wine with cancer chemopreventive activity. However, the basis for this activity is unclear. We studied leukotriene A(4) hydrolase (LTA(4)H) as a relevant target in pancreatic cancer. LTA(4)H knockdown limited the formation of leukotriene B(4) (LTB(4)), the enzymatic product of LTA(4)H, and suppressed anchorage-independent growth of pancreatic cancer cells. An in silico shape similarity algorithm predicted that LTA(4)H might be a potential target of resveratrol. In support of this idea, we found that resveratrol directly bound to LTA(4)H in vitro and in cells and suppressed proliferation and anchorage-independent growth of pancreatic cancer by inhibiting LTB(4) production and expression of the LTB(4) receptor 1 (BLT(1)). Notably, resveratrol exerted relatively stronger inhibitory effects than bestatin, an established inhibitor of LTA(4)H activity, and the inhibitory effects of resveratrol were reduced in cells where LTA(4)H was suppressed by shRNA-mediated knockdown. Importantly, resveratrol inhibited tumor formation in a xenograft mouse model of human pancreatic cancer by inhibiting LTA(4)H activity. Our findings identify LTA(4)H as a functionally important target for mediating the anticancer properties of resveratrol.

Cancer Res. 2010 Dec 1;70(23):9755-64. Epub 2010 Oct 15. PMID: 20952510


Resveratrol may have significant antioxidant effects in erythrocytes, leading to an increase in plasma antioxidant potential.

Resveratrol is one of the most widely studied of all the plant-produced polyphenols and has diverse, beneficial health effects including anti-cancer and cardio-protective effects. Many of the biological actions of this polyphenol have been attributed to its antioxidant properties. Erythrocytes contain a plasma membrane redox system (PMRS), which transfers electrons from intracellular donors (NADH and/or ascorbate (ASC)) to extracellular acceptors. There is evidence that the intracellular ASC donates electrons to extracellular ascorbate free radicals (AFRs) via the PMRS, which encompasses an AFR reductase; such a redox system enables the cells to effectively counteract oxidative processes.We present evidence to show that human erythrocytes take up resveratrol, and once inside the cell, resveratrol can donate electrons to extracellular electron acceptors through the erythrocyte PMRS and AFR reductase. Incubating human erythrocytes with resveratrol (10μM) caused a significant activation of the PMRS (41%) and AFR reductase (30%) over (basal level) the control; the effect of resveratrol was concentration-dependent. The electron donating ability of resveratrol is slightly less than that observed with quercetin. The role of resveratrol in activatingthe erythrocyte PMRS and AFR reductase may assume significance in all disease conditions in which there is a decrease in plasma antioxidant potential.

Pharmacol Rep. 2010;62(4):726-32. PMID: 20885013


Resveratrol possesses unique properties with therapeutic potentials for the treatment of cardiovascular diseases.

Resveratrol (3,4',5-trihydroxystilbene) is a member of natural, plant-derived chemicals known as polyphenols and is attracting increased attention due to its diverse health benefits especially in case of cardiovascular disease, cancer, diabetes and neurological problems. Despite impressive gains in diagnosis and treatment, cardiovascular disease (CVD) remains a serious clinical problem and threat to public health. Resveratrol possesses potent antioxidant properties and has been shown to decrease low-density lipoprotein-cholesterol oxidation and platelet aggregation. This compound also possesses a range of additional cardioprotective and vasoprotective properties including antiatherosclerotic and vasorelaxation action. Resveratrol also has the capacity to interact with multiple molecular targets, which involve diverse intracellular pathways. Most well-known is the ability of resveratrol to activate sirtuins, a class of NAD(+)-dependent deacetylase that affect multiple transcription factors and other protein targets. Recently, resveratrol was found to induce autophagy and regenerate myocardial ischemic tissue treated with stem cells. Overall observation indicates that resveratrol has a high therapeutic potentials for the treatment of cardiovascular diseases.

Mol Aspects Med. 2010 Dec;31(6):503-12. Epub 2010 Sep 15. PMID: 20837050


Resveratrol has anti-inflammatory and neuroprotective properties in a neurological tissue culture.

BACKGROUND: Inflammatory responses in the CNS mediated by activated glial cells play an important role in host-defense but are also involved in the development of neurodegenerative diseases. Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect microglia and astrocyte from inflammatory insults and explored mechanisms underlying different inhibitory effects of resveratrol on microglia and astrocytes.METHODS: A murine microglia cell line (N9), primary microglia, or astrocytes were stimulated by LPS with or without different concentrations of resveratrol. The expression and release of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6, MCP-1) and iNOS/NO by the cells were measured by PCR/real-time PCR and ELISA, respectively. The phosphorylation of the MAP kinase superfamily was analyzed by western blotting, and activation of NF-kappaB and AP-1 was measured by luciferase reporter assay and/or electrophoretic mobility shift assay.RESULTS: We found that LPS stimulated the expression of TNF-alpha, IL-1beta, IL-6, MCP-1 and iNOS in murine microglia and astrocytes in which MAP kinases, NF-kappaB and AP-1 were differentially involved. Resveratrol inhibited LPS-induced expression and release of TNF-alpha, IL-6, MCP-1, and iNOS/NO in both cell types with more potency in microglia, and inhibited LPS-induced expression of IL-1beta in microglia but not astrocytes. Resveratrol had no effect on LPS-stimulated phosphorylation of ERK1/2 and p38 in microglia and astrocytes, but slightly inhibited LPS-stimulated phosphorylation of JNK in astrocytes. Resveratrol inhibited LPS-induced NF-kappaB activation in both cell types, but inhibited AP-1 activation only in microglia.CONCLUSION: These results suggest that murine microglia and astrocytes produce proinflammatory cytokines and NO in response to LPS in a similar pattern with some differences in signaling molecules involved, and further suggest that resveratrol exerts anti-inflammatory effects in microglia and astrocytes by inhibiting different proinflammatory cytokines and key signaling molecules.

J Neuroinflammation. 2010;7:46. Epub 2010 Aug 17. PMID: 20712904


Resveratrol attenuates radiation damage.

Resveratrol, a member of a class of polyphenolic compounds known as flavonols, has been extensively studied for its anticancer, antiviral, anti-inflammatory, and neuroprotective roles. Caenorhabidits elegans is a well-established animal for investigating responses to radiation. We found that resveratrol may provide protection against hazardous radiation. Pre-treatment with resveratrol extended both the maximum and mean life span of irradiated C. elegans. Resveratrol acted as a strong radical scavenger and regulated superoxide dismutase (SOD) expression. In addition, resveratrol was shown to be capable of alleviating gamma-ray radiation exposure-induced reduction in mitochondrial SOD expression. Ultimately, a correlation may exist between dietary intake of trace amounts of resveratrol and anti-aging effects. A specific response mechanism may be activated after the administration of resveratrol in irradiated animals. Our results suggest the protective effect of resveratrol is due to its strong ability to protect from oxidative stress and protective effects in mitochondria. Therefore, resveratrol is potentially an effective protecting agent against irradiative damage.

Chemosphere. 2003 Dec;53(8):883-8. PMID: 20679743


Resveratrol may have therapeutic value in liver disease.

Liver diseases incorporate several maladies, which can range from benign histological changes to serious life-threatening conditions. These may include inborn metabolic disease, primary and metastatic cancers, alcoholic cirrhosis, viral hepatitis and drug-induced hepatotoxicity. Liver disease remains a major cause of morbidity and mortality with significant economic and social costs. Several novel approaches are currently being studied which may provide a better therapeutic outcome. The use of naturally occurring phytochemicals, some of them obtained from dietary sources, in the amelioration of illness have recently gained considerable popularity. These agents, having anti-oxidant and anti-inflammatory properties, provide a safe and effective means of ameliorating chronic disease. Resveratrol, a grape polyphenol, has shown considerable promise as a therapeutic agent in the treatment of the aforementioned liver ailments. Several studies have highlighted the hepatoprotective properties of resveratrol. Resveratrol has been shown to prevent hepatic damage because of free radicals and inflammatory cytokines, induce anti-oxidant enzymes and elevate glutathione content. Resveratrol has also been shown to modulate varied signal transduction pathways implicated in liver diseases. This review critically examines the current preclinical in vitro and in vivo studies on the preventive and therapeutic effects of resveratrol in liver diseases. The review highlights the pharmacological mechanisms involved in mediating the aforementioned effects. Toxicity, pharmacokinetics and clinical bioavailability of resveratrol are also reviewed in this article. The challenges involved, future directions and novel approaches such as site-specific drug delivery in the use of resveratrol for the prevention and treatment of liver disease are also discussed.

Liver Int. 2010 Sep;30(8):1103-14. Epub 2010 Jun 14. PMID: 20557453


Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity.

Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player in resveratrol-mediated neuroprotection.

Mol Pharmacol. 2010 Sep 1;78(3):466-77. Epub 2010 Jun 16. PMID: 20554604


Resveratrol has anti-atherogenic properties.

Resveratrol (RS), a polyphenol compound found in grapes and grape products, including wine, peanuts and berries, exists in cis- and trans-isomeric forms. RS is believed to decrease circulating low-density lipoprotein cholesterol levels and reduce cardiovascular disease (CVD) risk. However, it is possible that RS has other mechanisms to reduce the risk of CVD without altering lipid levels. The objective of this review is to critically examine results from recent research concerning potential effects of RS on CVD. RS exerts several health benefits including anti-atherogenic, anti-inflammatory and anti-cancer effects. RS may also prevent lipid oxidation, platelet aggregation, arterial vasodilation and modulates the levels of lipids and lipoproteins. As a potent, anti-oxidant RS reduces oxidative stress and regenerates alpha-tocopherol, which further strengthens the anti-oxidant defense mechanism. RS has been considered safe as no significant toxic effects have been identified, even when consumed at higher concentrations. This evidence identified RS as an effective anti-atherogenic agent, which could be used in the prevention and treatment of CVD.

Eur J Clin Nutr. 2010 Jul;64(7):660-8. Epub 2010 May 19. PMID: 20485301


Wine polyphenolic extracts have a cytotoxic effect against human cancer cell lines.

Red and white wine polyphenols have been reported to provide substantial health benefits. In this study, the cytotoxic activity of red and white wine polyphenolic extracts and of resveratrol was evaluated against different cancer cell lines--human cervix adenocarcinoma HeLa, human breast adenocarcinoma MDA-MB-361, and human breast carcinoma MDA-MB-453--and normal human peripheral blood mononuclear cells (PBMCs). Qualitative and quantitative compositions of wine polyphenolic extracts obtained by fractional vacuum distillation of corresponding wines were determined using spectrophotometric methods and high-performance liquid chromatography with diode array detection and liquid chromatography with electrospray ionization-time of flight mass spectrometry analysis. It was demonstrated that wine polyphenolic extracts and resveratrol exerted higher cytotoxic activity against HeLa and MDA-MB-453 cells in comparison to MDA-MB-361 cells and unstimulated and stimulated PBMCs. Furthermore, white wine polyphenolic extract exhibited a significantly higher antiproliferative action on cancer cell lines than red wine extract. The presence of condensed or fragmented nuclei in HeLa cells, pretreated with extract of white wine and stained with a mixture of acridine orange and ethidium bromide, pointed to the morphological signs of apoptosis. In addition, HeLa cells in late stages of apoptosis or secondary necrosis were also observed. Results from our study suggest that polyphenolic extracts from red and white wine may have anticarcinogenic potential.

J Med Food. 2010 Aug;13(4):851-62. PMID: 20482276


Resveratrol has anti-inflammatory properties in the brain.

Neuroinflammation is an important contributor to pathogenesis of neurological disorders, with microglial activation as a hallmark of neuroinflammation. Microglia serve the role of immune surveillance under normal conditions, but after brain damage or exposure to inflammation, microglia are activated and secrete pro-inflammatory and neurotoxic mediators. Sustained production of these factors contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation may become a promising therapeutic target for neurological disorders. Resveratrol, a non-flavonoid polyphenol rich in red wine and grapes, has beneficial health effects from its antioxidant, anticancer and anti-inflammatory properties. Recently, resveratrol has been shown to protect against various neurological disorders in experimental models, including brain ischemia, seizures, and neurodegenerative disease models. This minireview summarized the anti-inflammatory activities of resveratrol in the brain from both in vivo and in vitro studies, and highlighted the inhibition of activated microglia as a potential mechanism of neuroprotection. The release of various pro-inflammatory factors, the production of reactive oxygen species, and the activation of signal pathways leading to neuroinflammation were discussed in relation to microglial activation. Taken together, microglia are an important target for anti-inflammatory activities of resveratrol in the brain.

Pediatr Neurol. 2008 Jan;38(1):20-6. PMID: 20361959


Oats contain avenanthramides which inhibit proliferation of human colon cancer cell lines in vitro.

A high intake of whole grain foods is associated with reduced risk of colon cancer, but the mechanism underlying this protection has yet to be elucidated. Chronic inflammation and associated cyclooxygenase-2 (COX-2) expression in the colon epithelium are causally related to epithelial carcinogenesis, proliferation, and tumor growth. We examined the effect of avenanthramides (Avns), unique polyphenols from oats with anti-inflammatory properties, on COX-2 expression in macrophages, colon cancer cell lines, and on proliferation of human colon cancer cell lines. We found that Avns-enriched extract of oats (AvExO) had no effect on COX-2 expression, but it did inhibit COX enzyme activity and prostaglandin E(2) (PGE(2)) production in lipopolysaccharide-stimulated mouse peritoneal macrophages. Avns (AvExO, Avn-C, and the methylated form of Avn-C (CH3-Avn-C)) significantly inhibited cell proliferation of both COX-2-positive HT29, Caco-2, and LS174T, and COX-2-negative HCT116 human colon cancer cell lines, CH3-Avn-C being the most potent. However, Avns had no effect on COX-2 expression and PGE(2) production in Caco-2 and HT29 colon cancer cells. These results indicate that the inhibitory effect of Avns on colon cancer cell proliferation may be independent of COX-2 expression and PGE(2) production. Thus, Avns might reduce colon cancer risk through inhibition of macrophage PGE(2) production and non-COX-related antiproliferative effects in colon cancer cells. Interestingly, Avns had no effect on cell viability of confluence-induced differentiated Caco-2 cells, which display the characteristics of normal colonic epithelial cells. Our results suggest that the consumption of oats and oat bran may reduce the risk of colon cancer not only because of their high fiber content but also due to Avns, which attenuate proliferation of colonic cancer cells.

Nutr Cancer. 2010;62(8):1007-16. PMID: 21058188


Red wine polyphenols inhibit human breast cancer cells.

Breast cancer (one of the most common malignancy in Western societies), as well as esophagus, stomach, lung, bladder, and prostate cancer, depend on environmental factors and diet for growth and evolution. Dietary micronutriments have been proposed as effective inhibitory agents for cancer initiation, progression, and incidence. Among them, polyphenols, present in different foods and beverages, have retained attention in recent years. Red wine is a rich source of polyphenols, and their antioxidant and tumor arresting effects have been demonstrated in different in vitro and in vivo systems. In the present study, we have measured the antiproliferative effect of red wine concentrate, its total polyphenolic pool, and purified catechin, epicatechin, quercetin, and resveratrol, which account for more than 70% of the total polyphenols in red wine, on the proliferation of hormone sensitive (MCF7, T47D) and resistant (MDA-MB-231) breast cancer cell lines. Our results indicate that polyphenols, at the picomolar or the nanomolar range, decrease cell proliferation in a dose- and a time-dependant manner. In hormone sensitive cell lines, a specific interaction of each polyphenol with steroid receptors was observed, with IC(50)s lower than previously described. Interaction of polyphenols with steroid receptors cannot fully explain their inhibitory effect on cell proliferation. In addition, discrete antioxidant action on each cell line was detected under the same concentrations, both by modifying the toxic effect of H(2)O(2), and the production of reactive oxygen species (ROS), after phorbol ester stimulation. Our results suggest that low concentrations of polyphenols, and consecutively, consumption of wine, or other polyphenol-rich foods and beverages, could have a beneficial antiproliferative effect on breast cancer cell growth.

J Cell Biochem. 2000 Jun 6;78(3):429-41. PMID: 10861841


Resveratrol or a combination of resveratrol and quercetin, in concentrations equivalent to that present in red wines, are effective inhibitors of oral squamous carcinoma cell (SCC-25) growth and proliferation.

Resveratrol and quercetin are polyphenols which have been detected in significant amounts in green vegetables, citrus fruits and red grape wines. Beneficial effects attributed to these compounds include anti-inflammatory, antiviral and antitumor properties. The effect of resveratrol and quercetin on growth of human oral cancer cells is unknown. Resveratrol and quercetin, in concentrations of 1 to 100 microM, were incubated in triplicates with human oral squamous carcinoma cells SCC-25 in DMEM-HAM's F-12 supplemented with fetal calf serum and antibiotics in an atmosphere of 5% CO2 in air at 37 degrees C for 72 h. Cell growth was determined by counting the number of viable cells with a hemocytometer. Cell proliferation was measured by means of incorporation of [3H]thymidine in nuclear DNA. Resveratrol at 10 and 100 microM induced significant dose-dependent inhibition in cell growth as well as in DNA synthesis. Quercetin exhibited a biphasic effect, stimulation at 1 and 10 microM, and minimal inhibition at 100 microM in cell growth and DNA synthesis. Combining 50 microM of resveratrol with 10, 25 and 50 microM of quercetin resulted in a gradual and significant increase in the inhibitory effect of quercetin on cell growth and DNA synthesis. We conclude that resveratrol or a combination of resveratrol and quercetin, in concentrations equivalent to that present in red wines, are effective inhibitors of oral squamous carcinoma cell (SCC-25) growth and proliferation, and warrant further investigation as cancer chemopreventive agents.

Basic Clin Pharmacol Toxicol. 2006 Jan;98(1):32-7. PMID: 10211549


Resveratrol has antioxidant and anti-inflammatory effects in airway disease.

Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are a significant and increasing global health problem. These diseases are characterized by airway inflammation, which develops in response to various stimuli. In asthma, inflammation is driven by exposure to a variety of triggers, including allergens and viruses, which activate components of both the innate and acquired immune responses. In COPD, exposure to cigarette smoke is the primary stimulus of airway inflammation. Activation of airway inflammatory cells leads to the release of excessive quantities of reactive oxygen species (ROS), resulting in oxidative stress. Antioxidants provide protection against the damaging effects of oxidative stress and thus may be useful in the management of inflammatory airways disease. Resveratrol, a polyphenol that demonstrates both antioxidative and anti-inflammatory functions, has been shown to improve outcomes in a variety of diseases, in particular, in cancer. We review the evidence for a protective role of resveratrol in respiratory disease. Mechanisms of resveratrol action that may be relevant to respiratory disease are described. We conclude that resveratrol has potential as a therapeutic agent in respiratory disease, which should be further investigated.

Antioxid Redox Signal. 2010 Nov 15;13(10):1535-48. PMID: 20214495


Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage which may have chemoprentive

Plant polyphenols are important components of human diet, and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring anti-oxidants but also act as pro-oxidants catalyzing DNA degradation in the presence of metal ions such as copper. The plant polyphenol resveratrol confers resistance to plants against fungal agents and has been implicated as a cancer chemopreventive agent. Of particular interest is the observation that resveratrol has been found to induce apoptosis in cancer cell lines but not in normal cells. Over the last few years, we have shown that resveratrol is capable of causing DNA breakage in cells such as human lymphocytes. Such cellular DNA breakage is inhibited by copper specific chelators but not by iron and zinc chelating agents. Similar results are obtained by using permeabilized cells or with isolated nuclei, indicating that chromatin-bound copper is mobilized in this reaction. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and resveratrol to generate reactive oxygen species responsible for DNA cleavage. The results are in support of our hypothesis that anti-cancer mechanism of plant polyphenols involves mobilization of endogenous copper and the consequent pro-oxidant action. Such a mechanism better explains the anti-cancer effects of resveratrol, as it accounts for the preferential cytotoxicity towards cancer cells.

Pharm Res. 2010 Jun;27(6):979-88. Epub 2010 Jan 30. PMID: 20119749


Resveratrol induces programmed cell death and cell cycle arrest of human bladder cancer cells.

Resveratrol, a naturally occurring polyphenolic antioxidant compound present in grapes and red wine, has been reported to hold various biochemical responses. In this preliminary study, we evaluate the chemopreventive potential of resveratrol against bladder cancer and its mechanism of action. Treatment of bladder cancer cells with resveratrol resulted in a significant decrease in cell viability. Resveratrol induced apoptosis through the modulation of Bcl-2 family proteins and activation of caspase 9 and caspase 3 followed by poly(ADP-ribose) polymerase degradation. Treatment with resveratrol led to G(1) phase cell cycle arrest in T24 cells by activation of p21 and downregulation of cyclin D1, cyclin-dependent kinase 4, and phosphorylated Rb. Resveratrol also inhibited the phosphorylation of Akt, whereas the phosphorylation of p38 MAPK was enhanced. In addition, resveratrol treatment decreased the expression of vascular endothelial growth factor and fibroblast growth factor-2, which might contribute to the inhibition of tumor growth on the bladder cancer xenograft model. These findings suggest that reveratrol could be an important chemoprevention agent for bladder cancer.

Cancer Sci. 2010 Feb;101(2):488-93. Epub 2009 Oct 27. PMID: 20028382


Antioxidant extracts from potatoes inhibit the proliferation of human colon and liver cancer cells.

Antioxidant extracts from 5 potato lines were evaluated for antioxidant activity, total phenolics, chlorogenic acid, anthocyanin content, and in vitro anticancer capacity. Analysis showed that Mexican wild species S. pinnatisectum had the highest antioxidant activity, total phenolic, and chlorogenic acid content. The proliferation of colon cancer and liver cancer cells was significantly inhibited by potato antioxidant extracts. The highest antiproliferative activity was observed in extracts of S. pinnatisectum and the lowest in Northstar. An inverse correlation was found between total phenolics and the EC(50) of colon cancer cell (R(2) = 0.9303), as well as liver cancer cell proliferation (R(2) = 0.8992). The relationship between antioxidant activity and EC(50) of colon cancer/liver cancer cell proliferation was significant (R(2) = 0.8144; R(2) = 0.956, respectively). A significant difference in inhibition of cancer cells (P

Nutr Cancer. 2011 Sep 2. Epub 2011 Sep 2. PMID: 21888504


"Curcumin and Liver Cancer: A Review."

Primary liver cancer, also known as hepatocellular carcinoma (HCC), is one of the most lethal cancers having worldwide prevalence. Although most HCC cases are reported in the developing countries of Asia and Africa, there has been an alarming increase in HCC cases in Western Europe as well as United States. Chronic liver diseases, viral hepatitis, alcoholism as well as dietary carcinogens, such as aflatoxins and nitrosoamines, contribute to HCC. Liver transplantation as well as surgical resection at best offer limited treatment options. Thus, there exists a critical need to investigate and evaluate possible alternative chemopreventive and therapeutic strategies which may be effective in the control of liver cancer. HCC, most often, develops and progresses in a milieu of oxidative stress and inflammation. Phytochemicals, such as dietary polyphenols endowed with potent antioxidant as well as anti-inflammatory properties, provide a suitable alternative in affording alleviation of HCC. Curcumin, the principal polyphenolic curcuminoid, obtained from the turmeric rhizome Curcuma longa has long been used to cure several chronic ailments, such as neoplastic and neurodegenerative diseases. Studies suggest that curcumin may have antitumor, antioxidant, and anti-inflammatory properties. This article reviews the effects of curcumin in preclinical in vitro and in vivo models of HCC with particular emphasis to its antioxidant, apoptotic and anti-inflammatory effects as well as involvement in various molecular signaling mechanisms. This review also discusses potential challenges involved in the use of curcumin in HCC, such as bioavailability, pharmacokinetics, drug delivery as well as paucity of clinical studies.

Curr Pharm Biotechnol. 2011 Apr 5. Epub 2011 Apr 5. PMID: 21466422


"Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities."

Curcumin (CUR), a natural polyphenol isolated from tumeric ( Curcuma longa ), has been documented to possess antioxidant and anticancer activities. Unfortunately, the compound has poor aqueous solubility, which results in poor bioavailability following high doses by oral administration. To improve the solubility of CUR, we developed a novel curcumin nanoparticle system (CURN) and investigated its physicochemical properties as well as its enhanced dissolution mechanism. Our results indicated that CURN improved the physicochemical properties of CUR, including a reduction in particle size and the formation of an amorphous state with hydrogen bonding, both of which increased the drug release of the compound. Moreover, in vitro studies indicated that CURN significantly enhanced the antioxidant and antihepatoma activities of CUR (P

J Agric Food Chem. 2010 Jun 23 ;58(12):7376-82. PMID: 20486686


"Resveratrol inhibits tumor necrosis factor-alpha-mediated matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells."

Resveratrol is an active polyphenol found in red wine that has anti-cancer effects, but the molecular mechanisms of resveratrol on tumor invasion inhibition have not been well documented. The aim of this study was to elucidate the effects of resveratrol on invasion ability of human hepatocellular carcinoma cells and TNF-alpha-mediated MMP-9 expression. The expression activity of MMP-9 was measured by zymography, RT-PCR and western blot analysis. The expression of NF-kappa B was measured by EMSA and western blot analysis. TNF-alpha induced the MMP-9 expression in HepG2 cells. Resveratrol significantly inhibited TNF-alpha-mediated MMP-9 expression in HepG2 cells. NF-kappa B inhibitor induced a marked reduction in MMP-9 expression, and it suggested that NF-kappa B could play an important role in TNF-alpha-mediated MMP-9 expression. Furthermore, resveratrol significantly suppressed TNF-alpha-mediated NF-kappa B expression and invasion of HepG2 cells. Our results showed that resveratrol inhibited TNF-alpha-mediated MMP-9 expression and invasion of human hepatocellular carcinoma cells. The inhibitory effects are partly associated with the downregulation of the NF-kappa B signaling pathway.

Biomed Pharmacother. 2008 Jul-Aug;62(6):366-72. Epub 2007 Oct 22. PMID: 17988825


Solanum nigrum L. polyphenolic extract inhibits hepatocarcinoma cell growth.

BACKGROUND: Hepatocellular carcinoma (HCC) is a rapidly progressive cancer with poor prognosis. However, there have been no significant new developments in treating liver cancer. To search for an effective agent against HCC progression, we prepared a polyphenolic extract of Solanum nigrum L. (SNPE), a herbal plant indigenous to Southeast Asia and commonly used in oriental medicine, to evaluate its inhibitive effect on hepatocarcinoma cell growth. The growth inhibition of HepG2 cells in vitro and in vivo was determined in the presence of SNPE.RESULTS: We found 1 µg mL(-1) SNPE-fed mice showed decreased tumor weight and tumor volume by 90%. Notably, 2 µg mL(-1) SNPE resulted in almost complete inhibition of tumor weight as well as tumor volume. In line with this notion, SNPE reduced the viability of HepG(2) cells in a dose-dependent manner. HepG(2) cells were arrested in the G(2)/M phase of the cell cycle; meanwhile, the protein levels of cell CDC25A, CDC25B, and CDC25C were clearly reduced. Moreover, sub-G(1) phase accumulation and caspases-3, 8, and 9 cleavages were induced by SNPE.CONCLUSION: This study shows that SNPE is a potent agent for HCC treatment through targeting G(2)/M arrest and apoptosis induction, achieving cell growth inhibition.

J Sci Food Agric. 2011 Jan 15 ;91(1):178-85. Epub 2010 Sep 17. PMID: 20853273


Quercetin exhibits an inhibitory effect in a human hepatoma cell line.

Dietary polyphenols have been associated with the reduced risk of chronic diseases such as cancer, but the precise underlying mechanism of protection remains unclear. The aim of this study was to investigate the effect of quercetin on the activation of the apoptotic pathway in a human hepatoma cell line (HepG2). Treatment of cells for 18 h with quercetin induced cell death in a dose-dependent manner; however, a shorter treatment (4 h) had no effect on cell viability. Incubation of HepG2 cells with quercetin for 18 h induced apoptosis by the activation of caspase-3 and -9, but not caspase-8. Moreover, this flavonoid decreased the Bcl-xL:Bcl-xS ratio and increased translocation of Bax to the mitochondrial membrane. A sustained inhibition of the major survival signals, Akt and extracellular regulated kinase (ERK), also occurred in quercetin-treated cells. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade (mitochondrial pathway) and by inhibiting survival signaling in HepG2.

J Nutr. 2006 Nov ;136(11):2715-21. PMID: 17056790


"Curcumin: A Potential Neuroprotective Agent in Parkinson's Disease."

Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

Curr Pharm Des. 2012 Jan 1. Epub 2012 Jan 1. PMID: 22211691


The soy isoflavone genistein appears to repress human breast cancer cells.

Mammary stem cells are undifferentiated epithelial cells which initiate mammary tumors and render them resistant to anticancer therapies, when deregulated. Diets rich in fruits and vegetables are implicated in breast cancer risk reduction, yet underlying mechanisms are poorly understood. Here, we addressed whether dietary factors selectively target mammary epithelial cells that display stem-like/progenitor subpopulations with previously recognized tumor-initiating potential. Using estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 human breast cancer cell lines and freshly isolated epithelial cells from MMTV-Wnt-1 transgenic mouse mammary tumors, we demonstrate that sera of adult mice consuming soy isoflavone genistein (GEN) or blueberry (BB) polyphenol-containing diets alter the population of stem-like/progenitor cells, as measured by their functional ability to self-renew and form anchorage-independent spheroid cultures in vitro at low frequency (1-2%). Serum effects on mammosphere formation were dose-dependently replicated by GEN (40 nM>2 μM) and targeted the basal stem-like CD44(+)/CD24(-)/ESA(+) and the luminal progenitor CD24(+) subpopulations in MDA-MB231 and MCF-7 cells. GEN inhibition of mammosphere formation was mimicked by the Akt inhibitor perifosine and was associated with enhanced tumor suppressor PTEN expression. By contrast, a select mixture of BB phenolic acids was only active in MDA-MD-231 cells and its CD44(+)/CD24(-)/ESA(+) subpopulation, and this activity was independent of induction of PTEN expression. These findings delineate a novel and selective function of distinct dietary factors in targeting stem/progenitor cell populations in estrogen receptor-dependent and -independent breast cancers.

Carcinogenesis. 2012 Jan 4. Epub 2012 Jan 4. PMID: 22219179


Curcumin has a synergistic antitumor effect in combination with docetaxel against lung cancer.

Curcumin (Cum), the principal polyphenolic curcuminoid, obtained from the turmeric rhizome Curcuma longa, is recently reported to have potential antitumor effects in vitro and in vivo. Docetaxel (Doc) is considered as first-line chemotherapy for the treatment of non-small cell lung cancer. Here we report for the first time that Cum could synergistically enhance the in vitro and in vivo antitumor efficacy of Doc against lung cancer. In the current study, combination index (CI) is calculated in both in vitro and in vivo studies to determine the interaction between Cum and Doc. In the in vitro cytotoxicity test, media-effect analysis clearly indicated a synergistic interaction between Cum and Doc in certain concentrations. Moreover, in vivo evaluation further demonstrated the superior anticancer efficacy of Cum + Doc compared with Doc alone by intravenous delivery in an established A549 transplanted xenograft model. Results showed that Cum synergistically increased the efficacy of Doc immediately after 4 days of the initial treatment. Additionally, simultaneous administration of Cum and Doc showed little toxicity to normal tissues including bone marrow and liver at the therapeutic doses. Therefore, in vitro and in vivo evaluations demonstrated the satisfying synergistic antitumor efficacy of Cum and Doc against lung cancer and the introduction of Cum in traditional chemotherapy is a most promising way to counter the spread of non-small cell lung cancer.

Acta Biochim Biophys Sin (Shanghai). 2012 Feb ;44(2):147-53. Epub 2011 Nov 29. PMID: 22126905


Curcumin may have positive epigenetic effects in high prostate cancer.

Curcumin (CUR), a major bioactive polyphenolic component from turmeric curry, Curcuma longa, has been shown to be a potent anti-cancer phytochemical with well-established anti-inflammatory and anti-oxidative stress effects. Chromatin remodeling-related epigenetic regulation has emerged as an important mechanism of carcinogenesis, chemoprevention, and chemotherapy. CUR has been found to inhibit histone acetyltransferase activity, and it was also postulated to be a potential DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitor. In this study, we show that when human prostate LNCaP cells were treated with CUR, it led to demethylation of the first 14 CpG sites of the CpG island of the Neurog1 gene and restored the expression of this cancer-related CpG-methylation epigenome marker gene. At the protein level, CUR treatment had limited effects on the expression of epigenetic modifying proteins MBD2, MeCP2, DNMT1, and DNMT3a. Using ChIP assay, CUR decreased MeCP2 binding to the promoter of Neurog1 dramatically. CUR treatment showed different effects on the protein expression of HDACs, increasing the expression of HDAC1, 4, 5, and 8 but decreasing HDAC3. However, the total HDAC activity was decreased upon CUR treatment. Further analysis of the tri-methylation of histone 3 at lysine 27 (H3K27me3) showed that CUR decreased the enrichment of H3K27me3 at the Neurog1 promoter region as well as at the global level. Taken together, our present study provides evidence on the CpG demethylation ability of CUR on Neurog1 while activating its expression, suggesting a potential epigenetic modifying role for this phytochemical compound in human prostate cancer cells.

AAPS J. 2011 Dec ;13(4):606-14. Epub 2011 Sep 22. PMID: 21938566


Curcumin inhibits multi-drug resistant leukemia cells.

The anti-cancer activities of curcumin (CUR), a polyphenol derived from the plant Curcuma longa, has been extensively studied. In the present study, we found that CUR displayed anti-multidrug-resistant (MDR) activity in K562/A02 cells. A short-time treatment with CUR sufficiently and equally induced DNA damage, decreased cell viability, and triggered apoptosis in parent K562 and MDR K562/A02 cells. The short-time treatment with CUR also caused decrease of pro-caspase 3 in both cell lines and decrease of pro-caspase 9, increase of PARP cleavage and the ratio of Bax/Bcl-xL in MDR K562/A02 cells. Further experiment revealed that CUR was capable of down-regulating P-glycoprotein in MDR K562/A02 cells. Moreover, we observed that Cu(2+) enhanced CUR-mediated apoptosis which was blocked by antioxidants N-acetyl-cysteine and catalase. In summary, the short-time treatment with CUR sufficiently induced DNA damage, decreased cell viability and triggered apoptosis in MDR K562/A02 cells and Cu(2+) enhanced CUR-mediated apoptosis which due to reactive oxygen species generation.

Mol Cell Biochem. 2012 Jan ;360(1-2):253-60. Epub 2011 Sep 22. PMID: 21938404


"Resveratrol enhances prostate cancer cell response to ionizing radiation."

BACKGROUND: Prostate cancer (PrCa) displays resistance to radiotherapy (RT) and requires radiotherapy dose escalation which is associated with greater toxicity. This highlights a need to develop radiation sensitizers to improve the efficacy of RT in PrCa. Ionizing radiation (IR) stimulates pathways of IR-resistance and survival mediated by the protein kinase Akt but it also activates the metabolic energy sensor and tumor suppressor AMP-Activated Protein Kinase (AMPK). Here, we examined the effects of the polyphenol resveratrol (RSV) on the IR-induced inhibition of cell survival, modulation of cell cycle and molecular responses in PrCa cells.METHODS: Androgen-insensitive (PC3), sensitive (22RV1) PrCa and PNT1A normal prostate epithelial cells were treated with RSV alone (2.5-10μM) or in combination with IR (2-8 Gy). Clonogenic assays, cell cycle analysis, microscopy and immunoblotting were performed to assess survival, cell cycle progression and molecular responses.RESULTS: RSV (2.5-5μM) inhibited clonogenic survival of PC3 and 22RV1 cells but not of normal prostate PNT1A cells. RSV specifically sensitized PrCa cells to IR, induced cell cycle arrest at G1-S phase and enhanced IR-induced nuclear aberrations and apoptosis. RSV enhanced IR-induced expression of DNA damage (γH2Ax)and apoptosis (cleaved-caspase 3) markers as well as of the cell cycle regulators p53, p21(cip1) and p27(kip1). RSV enhanced IR-activation of ATM and AMPK but inhibited basal and IR-induced phosphorylation of Akt.CONCLUSIONS: Our results suggest that RSV arrests cell cycle, promotes apoptosis and sensitizes PrCa cells to IR likely through a desirable dual action to activate the ATM-AMPK-p53-p21(cip1)/p27(kip1) and inhibit the Akt signalling pathways.

Radiat Oncol. 2011 ;6:144. Epub 2011 Oct 26. PMID: 22029423


Resveratrol's anti-cancer properties may be associated with its ability to up-regulate miR-663 expression.

MicroRNAs are short noncoding RNAs that regulate the expression of many target genes posttranscriptionally and are thus implicated in a wide array of cellular and developmental processes. The expression of miR-155 or miR-21 is upregulated during the course of the inflammatory response, but these microRNAs are also considered oncogenes due to their upregulation of expression in several types of tumors. Furthermore, it is now well established that inflammation is associated with the induction or the aggravation of nearly 25% of cancers. Therefore, the above microRNAs are thought to link inflammation and cancer. Recently, resveratrol (trans-3,4',5-trihydroxystilbene), a natural polyphenol with antioxidant, anti-inflammatory, and anticancer properties, currently at the stage of preclinical studies for human cancer prevention, has been shown to induce the expression of miR-663, a tumor-suppressor and anti-inflammatory microRNA, while downregulating miR-155 and miR-21. In this paper we will discuss how the use of resveratrol in therapeutics may benefit from the preanalyses on the status of expression of miR-155 or miR-21 as well as of TGFβ1. In addition, we will discuss how resveratrol activity might possibly be enhanced by simultaneously manipulating the levels of its key target microRNAs, such as miR-663.

J Nucleic Acids. 2011 ;2011:102431. Epub 2011 Aug 10. PMID: 21845215


Silibinin prevents the EGFR signaling pathway and may be used as an effective drug for the inhibition of metastasis of human breast cancer.

CD44, the transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. The expression of CD44 and its variants is associated with poor prognosis in breast cancer. Here, we investigated the effect of silibinin (a polyphenolic flavonolignan of the herbal plant of Silybum marianum, milk thistle) on the epidermal growth factor (EGF) ligand-induced CD44 expression in human breast cancer cells. The levels of CD44 mRNA and protein expression were greatly increased by EGF and by TGF-α in SKBR3 and BT474 breast cancer cells. In contrast, EGFR ligand-induced CD44 expression was reduced by EGFR inhibitors, AG1478 and lapatinib, respectively. Interestingly, we observed that EGFR ligand-induced CD44 and matrix metalloproteinase-9 (MMP-9) expression was reduced by silibinin treatment in a dose-dependent manner. In addition, silibinin suppressed the EGF-induced phosphorylation of EGFR and extracellular signal-regulated kinase1/2 (ERK1/2), a downstream signaling molecule of EGFR. Therefore, we suggest that silibinin prevents the EGFR signaling pathway and may be used as an effective drug for the inhibition of metastasis of human breast cancer.

Anticancer Res. 2011 Nov ;31(11):3767-73. PMID: 22110198


Herbs provide protection against harmful UV radiation due to their antioxidant activity.

Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A"sclerojuglonic"compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects.

Pharmacogn Rev. 2011 Jul ;5(10):164-73. PMID: 22279374


Many of these herbs contain potent antioxidant compounds that provide significant protection against chronic diseases.

Herbs have been used as food and for medicinal purposes for centuries. Research interest has focused on various herbs that possess hypolipidemic, antiplatelet, antitumor, or immune-stimulating properties that may be useful adjuncts in helping reduce the risk of cardiovascular disease and cancer. In different herbs, a wide variety of active phytochemicals, including the flavonoids, terpenoids, lignans, sulfides, polyphenolics, carotenoids, coumarins, saponins, plant sterols, curcumins, and phthalides have been identified. Several of these phytochemicals either inhibit nitrosation or the formation of DNA adducts or stimulate the activity of protective enzymes such as the Phase II enzyme glutathione transferase (EC Research has centered around the biochemical activity of the Allium sp. and the Labiatae, Umbelliferae, and Zingiberaceae families, as well as flaxseed, licorice root, and green tea. Many of these herbs contain potent antioxidant compounds that provide significant protection against chronic diseases. These compounds may protect LDL cholesterol from oxidation, inhibit cyclooxygenase and lipoxygenase enzymes, inhibit lipid peroxidation, or have antiviral or antitumor activity. The volatile essential oils of commonly used culinary herbs, spices, and herbal teas inhibit mevalonate synthesis and thereby suppress cholesterol synthesis and tumor growth.

Am J Clin Nutr. 1999 Sep ;70(3 Suppl):491S-499S. PMID: 10479221


"Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells."

According to the cancer stem cell hypothesis, the aggressive growth and early metastasis of cancer may arise through dysregulation of self-renewal of stem cells. The objectives of this study were to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables) inhibits self-renewal capacity of pancreatic cancer stem cells (CSCs), and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that SFN inhibited self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by lentiviral-mediated shRNA expression enhanced the inhibitory effects of sulforaphane on self-renewal capacity of CSCs. SFN induced apoptosis by inhibiting the expression of Bcl-2 and XIAP, phosphorylation of FKHR, and activating caspase-3. Moreover, SFN inhibited expression of proteins involved in the epithelial-mesenchymal transition (beta-catenin, vimentin, twist-1, and ZEB1), suggesting the blockade of signaling involved in early metastasis. Furthermore, the combination of quercetin with SFN had synergistic effects on self-renewal capacity of pancreatic CSCs. These data suggest that SFN either alone or in combination with quercetin can eliminate cancer stem cell-characteristics.

Front Biosci (Elite Ed). 2011 ;3:515-28. Epub 2011 Jan 1. PMID: 21196331


"The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition."

BACKGROUND: Much attention has been recently focused on the role of cancer stem cells (CSCs) in the initiation and progression of solid malignancies. Since CSCs are able to proliferate and self-renew extensively due to their ability to express anti-apoptotic and drug resistant proteins, thus sustaining tumor growth. Therefore, the strategy to eradicate CSCs might have significant clinical implications. The objectives of this study were to examine the molecular mechanisms by which epigallocathechin gallate (EGCG) inhibits stem cell characteristics of prostate CSCs, and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables.RESULTS: Our data indicate that human prostate cancer cell lines contain a small population of CD44+CD133+ cancer stem cells and their self-renewal capacity is inhibited by EGCG. Furthermore, EGCG inhibits the self-renewal capacity of CD44+alpha2beta1+CD133+ CSCs isolated from human primary prostate tumors, as measured by spheroid formation in suspension. EGCG induces apoptosis by activating capase-3/7 and inhibiting the expression of Bcl-2, survivin and XIAP in CSCs. Furthermore, EGCG inhibits epithelial-mesenchymal transition by inhibiting the expression of vimentin, slug, snail and nuclear beta-catenin, and the activity of LEF-1/TCF responsive reporter, and also retards CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Interestingly, quercetin synergizes with EGCG in inhibiting the self-renewal properties of prostate CSCs, inducing apoptosis, and blocking CSC's migration and invasion. These data suggest that EGCG either alone or in combination with quercetin can eliminate cancer stem cell-characteristics.CONCLUSION: Since carcinogenesis is a complex process, combination of bioactive dietary agents with complementary activities will be beneficial for prostate cancer prevention and/ortreatment.

J Mol Signal. 2010 ;5:14. Epub 2010 Aug 18. PMID: 20718984


The dietary polyphenol quercetin targets pancreatic cancer stem cells.

According to the cancer stem cell hypothesis the aggressive growth and early metastasis of pancreatic cancer may arise through dysregulation of self-renewal of stem cells in the tissue. Since recent data suggest targeting of cancer stem cells by some dietary agents we studied the effect of quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Using in vitro and in vivo models of pancreatic cancer stem cells we found quercetin-mediated reduction of self-renewal as measured by spheroid and colony formation. Quercetin diminished ALDH1 activity and reverted apoptosis resistance as detected by substrate assays, FACS and Western blot analysis. Importantly, combination of quercetin with sulforaphane, an isothiocyanate enriched in broccoli, had synergistic effects. Although quercetin led to enhanced binding of the survival factor NF-kappaB, co-incubation with sulforaphane completely eliminated this pro-proliferative feature. Moreover, quercetin prevented expression of proteins involved in the epithelial-mesenchymal transition, which was even stronger in presence of sulforaphane, suggesting the blockade of signaling involved in early metastasis. In vivo, quercetin inhibited growth of cancer stem cell-enriched xenografts associated with reduced proliferation, angiogenesis, cancer stem cell-marker expression and induction of apoptosis. Co-incubation with sulforaphane increased these effects and no pronounced toxicity on normal cells or mice was observed. Our data suggest that food ingredients complement each other in the elimination of cancer stem cell-characteristics. Since carcinogenesis is a complex process, combination of bioactive dietary agents with complementary activities may be most effective.

Int J Oncol. 2010 Sep ;37(3):551-61. PMID: 20664924


Preventive compounds curcumin and piperine are capable of targeting breast stem cells.

The cancer stem cell hypothesis asserts that malignancies arise in tissue stem and/or progenitor cells through the dysregulation or acquisition of self-renewal. In order to determine whether the dietary polyphenols, curcumin, and piperine are able to modulate the self-renewal of normal and malignant breast stem cells, we examined the effects of these compounds on mammosphere formation, expression of the breast stem cell marker aldehyde dehydrogenase (ALDH), and Wnt signaling. Mammosphere formation assays were performed after curcumin, piperine, and control treatment in unsorted normal breast epithelial cells and normal stem and early progenitor cells, selected by ALDH positivity. Wnt signaling was examined using a Topflash assay. Both curcumin and piperine inhibited mammosphere formation, serial passaging, and percent of ALDH+ cells by 50% at 5 microM and completely at 10 microM concentration in normal and malignant breast cells. There was no effect on cellular differentiation. Wnt signaling was inhibited by both curcumin and piperine by 50% at 5 microM and completely at 10 microM. Curcumin and piperine separately, and in combination, inhibit breast stem cell self-renewal but do not cause toxicity to differentiated cells. These compounds could be potential cancer preventive agents. Mammosphere formation assays may be a quantifiable biomarker to assess cancer preventive agent efficacy and Wnt signaling assessment can be a mechanistic biomarker for use in human clinical trials.

Breast Cancer Res Treat. 2010 Aug ;122(3):777-85. Epub 2009 Nov 7. PMID: 19898931


Multitargeted therapy of cancer by ellagitannins.

Ellagitannins are bioactive polyphenols that have antioxidant and anti-inflammatory bioactivities. Pomegranate juice has the highest concentration of ellagitannins of any commonly consumed juice and contains the unique ellagitannin, punicalagin. Punicalagin is the largest molecular weight polyphenol known. Ellagitannins are not absorbed intact into the blood stream but are hydrolyzed to ellagic acid. They are also metabolized by gut flora into urolithins which are conjugated in the liver and excreted in the urine. These urolithins are also bioactive and inhibit prostate cancer cell growth. Inhibition of Nuclear Factor Kappa-B activation has been shown in prostate cancer cells and in human prostate cancer xenografts in mice. In clinical studies, pomegranate juice administration led to a decrease in the rate of rise of Prostate Specific Antigen after primary treatment with surgery or radiation. Continued translational research on the chemopreventive potential of pomegranate ellagitannins is ongoing.

Cancer Lett. 2008 Oct 8 ;269(2):262-8. Epub 2008 May 12. PMID: 18468784


Article provides evidence that both resveratrol and curcumin possess great potential both as chemopreventive agents and anticancer drugs.

Despite considerable improvements in the tolerance and efficacy of novel chemotherapeutic agents, the mortality of hematological malignancies is still high due to therapy relapse, which is associated with bad prognosis. Dietary polyphenolic compounds are of growing interest as an alternative approach, especially in cancer treatment, as they have been proven to be safe and display strong antioxidant properties. Here, we provide evidence that both resveratrol and curcumin possess huge potential for application as both chemopreventive agents and anticancer drugs and might represent promising candidates for future treatment of leukemia. Both polyphenols are currently being tested in clinical trials. We describe the underlying mechanisms, but also focus on possible limitations and how they might be overcome in future clinical use--either by chemically synthesized derivatives or special formulations that improve bioavailability and pharmacokinetics.

Molecules. 2010 ;15(10):7035-74. Epub 2010 Oct 12. PMID: 20944521


Apple exhibits anti-aging properties.

In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C) and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components.

Oxid Med Cell Longev. 2012 ;2012:491759. Epub 2012 Aug 30. PMID: 22970337


Curcumin reduces cisplatin-induced neurotoxicity.

The potential neuroprotective benefits of curcumin against cisplatin neurotoxicity were investigated. Curcumin is a polyphenol derived from the rhizome of Curcuma longa whose pharmacological effects include antioxidant, anti-inflammatory and anti-cancer properties. Cisplatin is a potent chemotherapeutic drug with activity against a wide variety of tumors, although it has notorious side effects. Cisplatin neurotoxicity is clinically evident in patients that have undergone a full course of chemotherapy and develop a peripheral neuropathy that may affect the treatment regimen and the patient's qualify of life. In this study, we examined whether curcumin can protect against cisplatin neurite outgrowth inhibition in PC12 cells, which is an indicator of the protective potential against neuropathy. We also investigated whether curcumin affects cisplatin effectiveness by analyzing the modulation of p53 gene expression and its effect on cisplatin cytotoxicity in HepG2 tumor cells. Non-cytotoxic concentrations of curcumin reduced in vitro neurotoxicity of cisplatin in PC12 cells. The treatment of PC12 cells with cisplatin (10μg/mL) significantly reduced neurite outgrowth. The tested concentration of curcumin (1.0 and 10μg/mL) did not result in neurite toxicity but nevertheless diminished cisplatin-induced inhibition of neurite outgrowth by up to 50% (p

Neurotoxicology. 2012 Oct 2. Epub 2012 Oct 2. PMID: 23036615


Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells.

Curcumin, a polyphenolic compound isolated from Curcuma longa (Turmeric) is widely used in traditional Ayurvedic medicine. Its potential therapeutic effects on a variety of diseases have long been known. Though anti-tumour effects of curcumin have been reported earlier, its mode of action and telomerase inhibitory effects are not clearly determined in brain tumour cells. In the present study, we demonstrate that curcumin binds to cell surface membrane and infiltrates into cytoplasm to initiate apoptotic events. Curcumin treatment has resulted in higher cytotoxicity in the cells that express telomerase enzyme, highlighting its potential as an anticancer agent. Curcumin induced growth inhibition and cell cycle arrest at G2/M phase in the glioblastoma and medulloblastoma cells used in the study. Gene and protein expression analyses revealed that curcumin down-regulated CCNE1, E2F1 and CDK2 and up-regulated the expression of PTEN genes resulting in growth arrest at G2/M phase. Curcumin-induced apoptosis is found to be associated with increased caspase- 3/7 activity and overexpression of Bax. In addition, down-regulation of Bcl2 and survivin was observed in curcumin treated cells. Besides these effects, we found curcumin to be inhibiting telomerase activity and down-regulating hTERT mRNA expression leading to telomere shortening. We conclude that telomerase inhibitory effects of curcumin underscore its use in adjuvant cancer therapy. J. Cell. Biochem.© 2012 Wiley Periodicals, Inc.

J Cell Biochem. 2012 Nov 28. Epub 2012 Nov 28. PMID: 23192708


Oleuropein Induces Anti-metastatic Effects in Breast Cancer.

Breast cancer causes death due to distant metastases in which tumor cells produce matrix metalloproteinase (MMP) enzymes which facilitate invasion. Oleuropein, the main olive oil polyphenol, has anti-proliferative effects. This study aimed to investigate the effect of oleuropein on the metastatic and anti-metastatic gene expression in the MDA human breast cancer cell line. We evaluated the MMPs and TIMPs gene expression by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in treated and untreated cells. This study demonstrated that OL may induce anti-metastatic effects on human breast cancer cells. We found that TIMP1,-3, and -4 were over-expressed after all periods of incubation in treated cancer cells compared to untreated cells, while MMP2 and MMP9 genes were down-regulated, at least initially. Treatment of breast cancer cells with oleuropein could help in prevention of cancer metastasis by increasing the TIMPs and suppressing the MMPs gene expressions.

Asian Pac J Cancer Prev. 2012 ;13(9):4555-9. PMID: 23167379


Anticancer activity of green tea polyphenols in prostate gland.

Numerous evidences from prevention studies in humans, support the existence of an association between green tea polyphenols consumption and a reduced cancer risk. Prostate cancer is one of the most frequently diagnosed male neoplasia in the Western countries, which is in agreement with this gland being particularly vulnerable to oxidative stress processes, often associated with tumorigenesis. Tea polyphenols have been extensively studied in cell culture and animal models where they inhibited tumor onset and progression. Prostate cancer appears a suitable target for primary prevention care, since it grows slowly, before symptoms arise, thus offering a relatively long time period for therapeutic interventions. It is, in fact, usually diagnosed in men 50-year-old or older, when even a modest delay in progression of the disease could significantly improve the patients quality of life. Although epidemiological studies have not yet yielded conclusive results on the chemopreventive and anticancer effect of tea polyphenols, there is an increasing trend to employ these substances as conservative management for patients diagnosed with less advanced prostate cancer. Here, we intend to review the most recent observations relating tea polyphenols to human prostate cancer risk, in an attempt to outline better their potential employment for preventing prostate cancer.

Oxid Med Cell Longev. 2012 ;2012:984219. Epub 2012 May 15. PMID: 22666523


"Naturally occurring hydroxytyrosol: synthesis and anticancer potential."

Several epidemiological and animal studies have suggested that polyphenols, a group of secondary plant metabolites occurring mainly in the plant kingdom, may have a protective effect against some chronic degenerative diseases such as cancer. Polyphenols are part of the human diet, being present in vegetal food and beverages. Among them, an olive biophenol named hydroxytyrosol [2-(3,4-dihydroxyphenyl)ethanol, HTyr] has recently received particular attention because of its antioxidant, antiproliferative, pro-apoptotic, and anti-inflammatory activities, which have the potential to specific counteract all cancer hallmarks, thus representing the expectant biological activities underlying the anti-tumor properties of this polyphenol. After a description of the synthetic procedures to prepare pure HTyr, this review takes into consideration the chemopreventive and chemotherapeutic potential of HTyr as the result of its antioxidant, antiproliferative and anti-inflammatory activities. In particular, the review is focused on the current knowledge of the main cellular and molecular mechanisms used by HTyr to affect carcinogenesis, highlighting the specific oncogenic and inflammatory signaling pathways potentially targeted by HTyr.

Curr Med Chem. 2012 Nov 19. Epub 2012 Nov 19. PMID: 23244583


Epigallocatechin Gallate (EGCG) exhibits inhibitory activity against colorectal cancer cells.

Green tea is a popular drink consumed daily by millions of people around the world. Previous studies have shown that some polyphenol compounds from green tea possess anticancer activities. However, systemic evaluation was limited. In this study, we determined the cancer chemopreventive potentials of 10 representative polyphenols (caffeic acid, CA; gallic acid, GA; catechin, C; epicatechin, EC; gallocatechin, GC; catechin gallate, CG; gallocatechin gallate, GCG; epicatechin gallate, ECG; epigallocatechin, EGC; and epigallocatechin gallate, EGCG), and explored their structure-activity relationship. The effect of the 10 polyphenol compounds on the proliferation of HCT-116 and SW-480 human colorectal cancer cells was evaluated using an MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with propidium iodide (PI)/RNase or annexin V/PI. Among the 10 polyphenols, EGCG showed the most potent antiproliferative effects, and significantly induced cell cycle arrest in the G1 phase and cell apoptosis. When the relationship between chemical structure and anticancer activity was examined, C and EC did not show antiproliferative effects, and GA showed some antiproliferative effects. When C and EC esterified with GA to produce CG and ECG, the antiproliferative effects were increased significantly. A similar relationship was found between EGC and EGCG. The gallic acid group significantly enhanced catechin's anticancer potential. This property could be utilized in future semi-synthesis of flavonoid derivatives to develop novel anticancer agents.

Nutrients. 2012 ;4(11):1679-91. Epub 2012 Nov 8. PMID: 23201840


"Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases."

Acetylation of the tumor suppressor gene p53 at the carboxy-terminal lysine (Lys) residues enhances its transcriptional activity associated with cell cycle arrest and apoptosis. Histone deacetylases (HDACs), a family of evolutionarily conserved enzymes, counterbalance the acetylation of lysine residues on histone and non-histone proteins. In this study, we demonstrate that green tea polyphenols (GTPs) and their major constituent, (-) epigallocatechin-3-gallate (EGCG), activate p53 through acetylation at the Lys373 and Lys382 residues by inhibiting class I HDACs in LNCaP human prostate cancer cells. Treatment of cells with GTPs (2.5-10µg/ml) and EGCG (5-20 µM) resulted in dose- and time-dependent inhibition of class I HDACs (HDAC1, 2, 3 and 8), albeit at varying levels. Discontinuation of treatment with GTP/EGCG resulted in the loss of p53 acetylation at both the sites in these cells. GTP/EGCG treatment also resulted in increased expression of p21/waf1 and Bax at the protein and message levels in these cells. The increased GTP/EGCG-mediated p53 acetylation enhanced its binding on the promoters of p21/waf1 and Bax, which was associated with increased accumulation of cells in the G0/G1 phase of the cell cycle and inductionof apoptosis. Our findings indicate that GTP/EGCG causes acetylation of p53 by inhibiting class I HDACs, a function that is likely to be part of the mechanisms that control the physiological activity of p53.

Int J Oncol. 2012 Jul ;41(1):353-61. Epub 2012 Apr 26. PMID: 22552582


Argania spinosa has antimalarial, antioxidant and anti-breat cancer properties.

INTRODUCTION: In our work, we evaluate the potential antioxidant, antimalarial activity and also activity against human breast cancer cells (MCF7) of Argan fruit extracts using in vitro models to validate the traditional use of this plant. Its chemical composition was also studied to begin the understanding of its activities, waiting to find the structure-activity relationship.RESULTS: Polyphenols (89.4-218.5 eqGallic acid (mg/g dry)), tannins (39.3-214.0 eqCatechin (mg/g dry)), flavonoids (3.4-11.1 eqQuercetin (mg/g dry)) and anthocyanins (0.74-10.92 eqCyanindin (mug/g dry)) were quantified. A good (ethyl acetate and decoction) and moderate (petroleum ether) antioxidant activity were obtained for DPPH (IC(50) 32.3-600.8 microg/ml) and ABTS (IC(50) 11.9-988.8 microg/ml) assays. In addition, we found a good antimalarial activity (IC(50) 35 to>100 microg/ml) and human breast cancer cells activity (IC(50) 42 to>100 microg/ml).CONCLUSIONS: The ethyl acetate extract and the decoction show interesting antimalarial and antioxidant activities. The results indicate a good correlations between anthocyanins quantitiy and the potential antioxidant (R(2)=0.9867) and also to antimalarial activity (R(2)=0.8175).

Phytomedicine. 2010 Feb ;17(2):157-60. Epub 2009 Jul 2. PMID: 19576744


"Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2."

In America and Western Europe, prostate cancer is the second leading cause of death in men. Emerging evidence suggests that chronic inflammation is a major risk factor for the development and metastatic progression of prostate cancer. We previously reported that the chemopreventive polyphenol curcumin inhibits the expression of the proinflammatory cytokines CXCL1 and -2 leading to diminished formation of breast cancer metastases. In this study, we analyze the effects of curcumin on prostate carcinoma growth, apoptosis and metastasis. We show that curcumin inhibits translocation of NFκB to the nucleus through the inhibition of the IκB-kinase (IKKβ, leading to stabilization of the inhibitor of NFκB, IκBα, in PC-3 prostate carcinoma cells. Inhibition of NFκB activity reduces expression of CXCL1 and -2 and abolishes the autocrine/paracrine loop that links the two chemokinesto NFκB. The combination of curcumin with the synthetic IKKβ inhibitor, SC-541, shows no additive or synergistic effects indicating that the two compounds share the target. Treatment of the cells with curcumin and siRNA-based knockdown of CXCL1 and -2 induce apoptosis, inhibit proliferation and downregulate several important metastasis-promoting factors like COX2, SPARC and EFEMP. In an orthotopic mouse model of hematogenous metastasis, treatment with curcumin inhibits statistically significantly formation of lung metastases. In conclusion, chronic inflammation can induce a metastasis pronephenotype in prostate cancer cells by maintaining a positive proinflammatory and prometastatic feedback loop between NFκB and CXCL1/-2. Curcumin disrupts this feedback loop by the inhibition of NFκB signaling leading to reduced metastasis formation in vivo.

Carcinogenesis. 2012 Dec ;33(12):2507-19. Epub 2012 Oct 5. PMID: 23042094


Targeting Cancer Stem Cells by Curcumin and Clinical Applications.

Curcumin is a well-known dietary polyphenol derived from the rhizomes of turmeric, an Indian spice. The anticancer effect of curcumin has been demonstrated in many cell and animal studies, and recent research has shown that curcumin can target cancer stem cells (CSCs). CSCs are proposed to be responsible for initiating and maintaining cancer, and contribute to recurrence and drug resistance. A number of studies have suggested that curcumin has the potential to target CSCs through regulation of CSC self-renewal pathways (Wnt/β-catenin, Notch, Sonic Hedgehog) and specific microRNAs involved in acquisition of epithelial-mesenchymal transition (EMT). The potential impact of curcumin, alone or in combination with other anticancer agents, on CSCs was evaluated as well. Furthermore, the safety and tolerability of curcumin have been well-established by numerous clinical studies. Importantly, the low bioavailability of curcumin has been dramatically improved through the use of structural analogues or special formulations. More clinical trials are underway to investigate the efficacy of this promising agent in cancer chemoprevention and therapy. In this article, we review the effects of curcumin on CSC self-renewal pathways and specific microRNAs, as well as its safety and efficacy in recent human studies. In conclusion, curcumin could be a very promising adjunct to traditional cancer treatments.

Cancer Lett. 2014 Jan 23. Epub 2014 Jan 23. PMID: 24463298


Blueberry anthocyanins inhibited proliferation and induced apoptosis in oral cancer cells in a dose dependent manner.

Blueberries are an excellent source of dietary polyphenols such as anthocyanins and phenolic acids. In this study, we investigated the ability of anthocyanins from the wild blueberries of Inner Mongolia to suppress the growth of the oral cancer cell line KB. The blueberry anthocyanins were extracted with methanol-containing 0.1% (v/v) hydrochloric acid. Fourteen unique anthocyanins were identified using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The anticancer bioactivity of the extracts on KB cells was analyzed using methylthiazolyl-tetrazolium (MTT), flow cytometry (FCM) and immunocytochemistry. It was shown that the blueberry anthocyanins suppressed the proliferation of KB cells in a dose-dependent manner, as well as induced G2/M cell cycle arrest and apoptosis of oral cancer KB cells. Immunocytochemistry analysis showed that the expression of caspase-9 and cytochrome c were obviously increased after the anthocyanins treatment. Western blot analysis also indicated that the expression of p53 was increased. Methylation-specific PCR (MSP) showed that the amount of unmethylated p53 increased, indicating that the anthocyanins can down-regulate the methylation of p53.

Yi Chuan. 2014 Jun 20 ;36(6):566-73. PMID: 24929515


Effects of natural antioxidants in neurodegenerative disease.

Polyphenols are secondary metabolites with antioxidant properties and are abundant in the diet. Fruits, vegetables, herbs, and various drinks (tea, wine, and juices) are all sources of these molecules. Despite their abundance, investigations into the benefits of polyphenols in human health have only recently begun. Phenolic compounds have received increasing interest because of numerous epidemiological studies. These studies have suggested associations between the consumption of polyphenol-rich aliments and the prevention of chronic diseases, such as cancer, cardiovascular diseases, and neurodegenerative diseases. More specifically, in the last 10 years literature on the neuroprotective effects of a polyphenol-rich diet has grown considerably. It has been demonstrated, in various cell culture and animal models, that these metabolites are able to protect neuronal cells by attenuating oxidative stress and damage. However, it remains unclear as to how these compounds reach the brain, what concentrations are necessary, and what biologically active forms are needed to exert beneficial effects. Therefore, further research is needed to identify the molecular pathways and intracellular targets responsible for polyphenol's neuroprotective effects. The aim of this paper is to present various well-known dietary polyphenols and their mechanisms of neuroprotection with an emphasis on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.

Nutr Neurosci. 2012 Jan ;15(1):1-9. PMID: 22305647


An apple flavonoid enriched fraction possessed a significantly stronger antiproliferative and specific action than Sorafenib in vitro.

Apples are a major source of dietary phytochemicals such as flavonoids in the Western diet. Here we report anticancer properties and possible mechanism of action of apple flavonoid-enriched fraction (AF4) isolated from the peels of Northern Spy apples in human hepatocellular carcinoma cells, HepG2. Treatment with AF4 induced cell growth inhibition in HepG2 cells in time- and dose-dependent manner. Concentration of 50 μg/ml (50 μg total monomeric polyphenols/ml) AF4 was sufficient to induce a significant reduction in cell viability within 6 h of treatment (92%, P

Nutr Cancer. 2014 Sep 25:1-10. Epub 2014 Sep 25. PMID: 25256427


Green tea catechins were potent inhibitors of the polo-box domain of polo-like kinase 1.

Polo-like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N-terminal kinase domain and C-terminal polo-box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (-)-epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein-labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose-dependent inhibition of the PBD and preliminary structure-activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell-cycle arrest in theS and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.

ChemMedChem. 2014 Sep 5. Epub 2014 Sep 5. PMID: 25196850


Extra-virgin olive oil polyphenols induced strong tumoricidal effects by selectively triggering apoptotic cell death in HER2-positive cells.

Depending on their structure, some polyphenols (e.g. flavonoids) abundantly found in plant-derived beverages such as green tea can efficiently inhibit tyrosine kinase and serine/threonine kinase activities. Extra-virgin olive oil (EVOO - the juice of the olive obtained solely by pressing and consumed without any further refining process) is unique among other vegetable oils because of the high level of naturally occurring phenolic compounds. We explored the ability of EVOO polyphenols to modulate HER2 tyrosine kinase receptor-induced in vitro transformed phenotype in human breast epithelial cells. Using MCF10A normal breast epithelial cells retrovirally engineered to overexpress the wild-type sequence of human HER2, we further determined the relationship between chemical structures of EVOO-derived phenolics and their inhibitory activities on the tyrosine kinase activity of the HER2 oncoprotein. When the activation (phosphorylation) status of HER2 was semi-quantitatively measured the secoiridoids blocked HER2 signaling by rapidly reducing the activation status of the 1248 tyrosine residue (Y1248), the main autophosphorylation site of HER2. EVOO-derived single phenols tyrosol and hydroxytyrosol and the phenolic acid elenolic acid failed to significantly decrease HER2 tyrosine kinase activity. The anti-HER2 tyrosine kinase activity IC50 values were up to 5-times lower in the presence of EVOO-derived lignans and secoiridoids than in the presence of EVOO-derived single phenols and phenolic acids. EVOO polyphenols induced strong tumoricidal effects by selectively triggering high levels of apoptotic cell death in HER2-positive MCF10A/HER2 cells but not in MCF10A/pBABE matched control cells. EVOO lignans and secoiridoids prevented HER2-induced in vitro transformed phenotype as they inhibited colony formation of MCF10A/HER2 cells in soft-agar. Our current findings not only molecularly support recent epidemiological evidence revealing that EVOO-related anti-breast cancer effects primarily affect the occurrence of breast tumors over-expressing the type I receptor tyrosine kinase HER2 but further suggest that the stereochemistry of EVOO-derived lignans and secoiridoids might provide an excellent and safe platform for the design of new HER2 targeted anti-breast cancer drugs.

Int J Oncol. 2009 Jan ;34(1):43-51. PMID: 19082476


Curcumin has established itself as a safe and promising molecule for the prevention and therapy of cancer.

Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.

Molecules. 2015 ;20(2):2728-69. Epub 2015 Feb 5. PMID: 25665066


There is evidence that pomegranate has a putative anticancerogenic effect in prostate cancer and can safely be used in high doses.

Preclinical in vitro and in vivo studies demonstrate potent effects of pomegranate preparations in cancer cell lines and animal models with chemically induced cancers. We have carried out one systematic review of the effectiveness of pomegranate products in the treatment of cancer and another on their safety. The PubMed search provided 162 references for pomegranate and cancer and 122 references for pomegranate and safety/toxicity. We identified 4 clinical studies investigating 3 pomegranate products, of which one was inappropriate because of the low polyphenol content. The evidence of clinical effectiveness was poor because the quality of the studies was poor. Although there is no concern over safety with the doses used in the clinical studies, pomegranate preparations may be harmful by inducing synthetic drug metabolism through activation of liver enzymes. We have analysed various pomegranate products for their content of anthocyanins, punicalagin, and ellagic acid in order to compare them with the benchmark doses from published data. If the amount of coactive constituents is not declared, patients risk not benefiting from the putative pomegranate effects. Moreover, pomegranate end products are affected by many determinants. Their declaration should be incorporated into the regulatory guidance and controlled before pomegranate products enter the market.

Evid Based Complement Alternat Med. 2015 ;2015:258598. Epub 2015 Mar 1. PMID: 25815026


Polyphenols in pomegranate rind could be a potential treatment to suppress bladder cancer cell proliferation.

miRNAs and their validated miRNA targets appear as novel effectors in biological activities of plant polyphenols; however, limited information is available on miR-34a mediated cytotoxicity of pomegranate rind polyphenols in cancer cell lines. For this purpose, cell viability assay, Realtime quantitative PCR for mRNA quantification, western blot for essential protein expression, p53 silencing by shRNA and miR-34a knockdown were performed in the present study. EJ cell treatment with 100 µg (GAE)/mL PRE for 48 h evoked poor cell viability and caspase-dependent pro-apoptosis appearance. PRE also elevated p53 protein and triggered miR-34a expression. The c-Myc and CD44 were confirmed as direct targets of miR-34a in EJ cell apoptosis induced by PRE. Our results provide sufficientevidence that polyphenols in PRE can be potential molecular clusters to suppress bladder cancer cell EJ proliferation via p53/miR-34a axis. Copyright © 2015 John Wiley&Sons, Ltd.

Phytother Res. 2015 Mar ;29(3):415-22. Epub 2015 Jan 8. PMID: 25572695


A lyophilized grape extract comparable to putative dietary doses induced important morphology changes, migration inhibition, downregulation of undifferentiated stem/stem-like cells markers and EMT.

Natural dietary components are evolutionary-selected molecules able to control inflammation and cancerous transformation and progression. Because many studies assessed the beneficial properties of key molecules extracted from grapes, we aimed at investigating the properties of Liofenol™, a natural red wine lyophilized extract, devoid of alcohol and composed by a miscellaneous of components (polyphenols, flavonoids, anthocyanins). We proved that the colon cancer cell line HCT116 responded to Liofenol™ treatment by reducing their proliferation, in association with an increase of p53 and p21 cell cycle gate keepers. Liofenol™ increased dihydroceramides, sphingolipid mediators involved in cell cycle arrest and reduced proliferation rate. We observed a strong induction of antioxidant response, with the activation of the transcriptional factor Nrf2, involved in redox homeostasis and differentiation, without altering tumor sensitivity to chemotherapy. Liofenol™ induced an important morphology change in HCT116 cells, migration inhibition, undifferentiated stem/stem-like cells markers downregulation, and E-cadherin downregulation, interested in epithelia to mesenchymalmalignant transition. We conclude that lyophilized grape extract, at dose comparable to putative dietary doses, can activate molecular pathways, involving Nrf2 signaling and the modulation of structural and signaling sphingolipid mediators that cooperate in promoting differentiation and reducing proliferation of digestive tract cancer cells.

Nutr Cancer. 2015 Apr ;67(3):494-503. Epub 2015 Feb 23. PMID: 25705818


The overall objective of the present review is to update and discuss the key findings, from recent in vivo studies, on the effects of strawberries on human health.

Since a high intake of fruits and vegetables is inversely related to the incidence of several degenerative diseases, the importance of a balanced diet in relation to human health has received increased consumer attention worldwide. Strawberries (Fragaria X ananassa, Duch.) are a rich source of a wide variety of nutritive compounds such as sugars, vitamins, and minerals, as well as non-nutritive, bioactive compounds such as flavonoids, anthocyanins and phenolic acids. All of these compounds exert a synergistic and cumulative effect on human health promotion and in disease prevention. Strawberry phenolics are indeed able (i) to detoxify free radicals blocking their production, (ii) to modulate the expression of genes involved in metabolism, cell survival and proliferation and antioxidant defense, and (iii) to protect and repair DNA damage. The overall objective of the present review is to update and discuss the key findings, from recent in vivo studies, on the effects of strawberries on human health. Particular attention will be paid to the molecular mechanisms proposed to explain the health effects of polyphenols against the most common diseases related to oxidative stress driven pathologies, such as cancer, cardiovascular diseases, type II diabetes, obesity and neurodegenerative diseases, and inflammation.

Food Funct. 2015 Mar 24. Epub 2015 Mar 24. PMID: 25803191


Epigallocatechin-3-gallate (EGCG) can protect cochlear hair cells from ototoxic drug gentamicin.

Notch signalling pathway plays an essential role in the development of cochlea, which inhibits the proliferation of hair cells. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea, which presents strong antioxidant activation and has been applied for anti-cancer and anti-inflammatory. In this study, we treated the cochlear explant cultures with EGCG and found that EGCG can protect cochlear hair cells from ototoxic drug gentamicin. We demonstrated that EGCG could down-regulate the expression of Notch signalling pathway target genes, such as Hes1, Hes5, Hey1 and Hey5. However, the Notch pathway ligands such as Delta1, Jag1 and Jag2 were not affected by EGCG. To further illustrate the mechanism of recover cochlear hair cells, we demonstrated that EGCG inhibited the activity ofγ-secrectase to suppress Notch signalling pathway and promoted the proliferation and regeneration of hair cells in the damaged cochlea. Our results suggest for the first time the role of EGCG as an inhibitor of the Notch signalling pathway, and support its potential value in hearing-impaired recovery in clinical therapy.

Neurochem Res. 2015 Apr 21. Epub 2015 Apr 21. PMID: 25896296


Dietary flavonoids critically influence several cellular and immune processes associated with the development and progression of cancer.

The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumor action of plantflavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumor activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin and quercetin, seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations.

In Vivo. 2005 Sep-Oct;19(5):895-909. PMID: 16097445


GSE/GSP ameliorates some of the cytotoxic effects on normal cells/tissues induced by chemo drugs and radiotherapy.

Grapes are one of the most consumed fruits in the world and are rich in polyphenols. Grape seed proanthocyanidins (GSP) have demonstrated chemopreventive and/or chemotherapeutic effects in various cancer cell cultures and animal models. The clinical efficacy of chemotherapy is often limited by its adverse effects. Several studies show that reactive oxygen species mediate the cardiotoxicity and neurotoxicity induced by various cancer chemotherapeutic agents. This implies that concomitant administration of antioxidants may prevent these adverse effects. The review was carried out in accordance with the PRISMA guidelines. An electronic search strategy in Medline and Embase databases was conducted. Of the 41 studies reviewed, 27 studied GSP while the remainder (14) studied grape seed or skin extracts (GSE). All the studies were published in English, except 2 in Chinese. A significant percentage (34%) of the studies we reviewed assessed the effect of GSE or GSP on cardiotoxicity induced by chemotherapy. Doxorubicin was the most common chemotherapeutic drug studied followed by cisplatin. Research studies that assessed the effect of GSE or GSP on radiation treatment accounted for 22% of the articles reviewed. GSE/GSP ameliorates some of the cytotoxic effects on normal cells/tissues induced by chemo/radiotherapy.

Nutr Cancer. 2015 Apr 16:1-11. Epub 2015 Apr 16. PMID: 25880972


This review discusses the beneficial effects of tea and tea components in bladder cancer prevention and treatment of bladder cancers.

The leaves of Camellia sinensis (L.) are the source of tea, the second most consumed beverage worldwide. Tea contains several chemical compounds such as polyphenols (mainly catechins), caffeine, theophylline, L-theanine, among many others. Polyphenolic compounds are the main responsible for its significant antioxidant properties and anticarcinogenic potential. Bladder cancer is one of the most common types of cancer, and its progression and onset are thought to be controlled by dietary and lifestyle factors. Epidemiological studies showed that the regular consumption of tea can be a preventive factor for this type of cancer, and several in vivo and in vitro studies reported that tea and its components may interfere in the cancer cells' signaling, preventing the bladder tumor progression. The mechanisms responsible for this protection include deregulation of cell cycle, induction of apoptosis while protecting the surrounding healthy bladder cells, inhibition of metastization processes, among others. Herein, we discuss the potential beneficial effects of tea and tea components in bladder cancer prevention and/or treatment, and how they can be helpful in finding new therapeutic strategies to treat this type of cancer.

Anticancer Agents Med Chem. 2014 Dec 3. Epub 2014 Dec 3. PMID: 25495463


In this mini-review, selected flavonoids which are a group of plant polyphenols that are able to regulate angiogenesis in vitro and in vivo systems are discussed.

Discovery of novel drugs that are able to prevent angiogenesis is a fast growing branch of cancer research. Current approaches to cancer chemotherapy include the use of alkylating agents, antimetabolites, antitumor antibiotics, platinum analogs and drugs derived from natural compounds. However, most of the currently used chemotherapeutic drugs have adverse side effects on normal healthy cells. In addition to the classical targets of cancer chemotherapy, prevention of angiogenesis through the regulation of indigenous angiogenic factors is a leading approach of developing selective novel anticancer drugs. Because of their low toxicity, there is increasing interest in exploring specific dietary phytochemicals as possible antiangiogenic agents. In this mini-review, selected flavonoids (e.g., apigenin, luteolin, quercetin and epigallocatechin-3- gallate, which are a group of plant polyphenols) that are able to regulate angiogenesis in in vitro and in vivo systems are discussed in the light of their potential to be exploited as novel anticancer drugs.

Mini Rev Med Chem. 2015 ;15(6):479-89. PMID: 25873069


Chokeberry juice has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.

Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G(2)/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.

PLoS One. 2012 ;7(3):e32526. Epub 2012 Mar 8. PMID: 22412883


Polyphenol rich chokeberry juice exhibited anti-proliferative effects in Caco-2 cancer colon cells.

Berries and red fruits are important dietary sources of polyphenols [1]. In vitro and animal studies have demonstrated the bioavailability and the anti-proliferative and anticarcinogenic properties of these fruits or of their phenolic components [2, 3]. Consumption of berries may contribute to the reduction of colon cancer by mechanisms not yet understood. Gene expression analysis using microarrays allows for a more comprehensive study of the possible molecular mechanisms by which food or food components may prevent certain cancers of the gastrointestinal tract [4]. The aim of this research is to investigate the anti-proliferative effects of a polyphenol-rich berry juice on a human model of colon cancer cells and its association to transcriptional changes in relation to colon cancer.

Genes Nutr. 2007 Oct ;2(1):111-3. PMID: 18850155


Oleuropein effectively inhibited cell viability and induced apoptosis in HepG2 human hepatoma cells in a dose‑dependent manner, through activation of the caspase pathway.

Oleuropein is a polyphenol, that is found in extra‑virgin olive oil. Previous studies have shown that oleuropein inhibits cell proliferation and induces apoptosis in breast cancer, colorectal cancer and thyroid cancer. The aim of the present study was to investigate the effects of oleuropein in hepatocellular carcinoma (HCC) cells. The results of Cell Counting Kit 8 and flow cytometric analysis indicated that oleuropein effectively inhibited cell viability and induced apoptosis in HepG2 human hepatoma cells in a dose‑dependent manner, through activation of the caspase pathway. Proapoptotic Bcl‑2 family members, BAX and Bcl‑2, were involved in oleuropein‑induced apoptosis. The phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) signaling pathway was also shown to be involved in this process. Oleuropein was demonstrated to suppress the expression of activated AKT. In addition, AKT overexpression promoted cell survivalfollowing treatment with oleuropein, while inhibition of AKT promoted cell death. Furthermore, the data demonstrated that oleuropein induces the production of reactive oxygen species (ROS) and that the function of oleuropein is, at least partially, ROS‑dependent. These results suggest that oleuropein may be a promising novel chemotherapeutic agent in hepatocellular carcinoma.

Mol Med Rep. 2015 Jun ;11(6):4617-24. Epub 2015 Jan 28. PMID: 25634350


This review summarizes that polyphenols and their effects greatly depend on the applied dose, the cell type, exposure time and environmental conditions.

Various plant polyphenols have been recognized as redox active molecules. This review discusses some aspects of polyphenols' modes of redox action, corresponding structure-activity relationships and their potential to be applied as adjuvants to conventional cytostatic drugs. Polyphenols' antioxidative capacity has been discussed as the basis for targeting oxidative stress and, consequently, for their chemopreventive and anti-inflammatory activities, which may alleviate side-effects on normal cells arising from oxidative stress caused by cytostatics. Some polyphenols may scavenge various free radicals directly, and some of them are found to suppress free radical production through inhibiting NADPH oxidases and xanthine oxidase. Additionally, polyphenols may increase antioxidative defense in normal cells by increasing the activity of NRF2, transcription factor for many protective proteins. The activation of the NRF2-mediated signaling pathways in cancer cells results in chemoresistance. Luteolin, apigenin and chrysin reduce NRF2 expression and increase the chemosensitivity of cancer cells to cytostatic drugs. Their common 5,7-dihydroxy-4H-chromen-4-one moiety, may represent a starting pharmacophore model for designing novel, non-toxic compounds for overcoming chemoresistance. However, prooxidative activity of some polyphenols (quercetin, EGCG) may also provide a basis for their use as chemotherapeutic adjuvants since they may enhance cytotoxic effects of cytostatics selectively on cancer cells. However, considerable caution is needed in applying polyphenols to anticancer therapy, since their effects greatly depend on the applied dose, the cell type, exposure time and environmental conditions.

Curr Top Med Chem. 2015 ;15(5):496-509. PMID: 25665579


A review evaluating the modulation of miRNAs by dietary agents, which could potentially be exploited for inhibition of mutagenesis and carcinogenesis.

MicroRNAs (miRNAs) have been implicated in many biological processes, cancer, and other diseases. In addition, miRNAs are dysregulated following exposure to toxic and genotoxic agents. Here we review studies evaluating modulation of miRNAs by dietary and pharmacological agents, which could potentially be exploited for inhibition of mutagenesis and carcinogenesis. This review covers natural agents, including vitamins, oligoelements, polyphenols, isoflavones, indoles, isothiocyanates, phospholipids, saponins, anthraquinones and polyunsaturated fatty acids, and synthetic agents, including thiols, nuclear receptor agonists, histone deacetylase inhibitors, antiinflammatory drugs, and selective estrogen receptor modulators. As many as 145 miRNAs, involved in the control of a variety of carcinogenesis mechanisms, were modulated by these agents, either individually or in combination. Most studies used cancer cells in vitro with the goal of modifying their phenotype by changing miRNA expression profiles. In vivo studies evaluated regulation of miRNAs by chemopreventive agents in organs of mice and rats, either untreated or exposed to carcinogens, with the objective of evaluating their safety and efficacy. The tissue specificity of miRNAs could be exploited for the chemoprevention of site-specific cancers, and the study of polymorphic miRNAs is expected to predict the individual response to chemopreventive agents as a tool for developing new prevention strategies.

Mutat Res. 2012 Oct-Dec;751(2):287-303. Epub 2012 Jun 7. PMID: 22683846


Overexpression of miR-7-1 can highly potentiate efficacy of EGCG for induction of apoptosis in human malignant neuroblastoma cells.

Neuroblastoma is an extracranial solid tumor that usually occurs in infants and children. Malignant neuroblastomas remain mostly refractory to currently available chemotherapeutic agents. So, new therapeutic agents and their molecular mechanisms for induction of cell death must be explored for successful treatment of human malignant neuroblastomas. Two polyphenolic compounds, which are abundant in green tea, are (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG) that possess impressive anti-cancer properties. It is not known yet whether EGC and EGCG can modulate the levels of expression of specific microRNAs (miRs) for induction of apoptosis in human malignant neuroblastomas. In this investigation, we revealed that treatment with EGC or EGCG caused induction of apoptosis with significant changes in expression of specific oncogenic miRs (OGmiRs) and tumor suppressor miRs (TSmiRs) in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cell lines. Treatment of both cell lines with either 50μM EGC or 50 μM EGCG decreased expression of the OGmiRs (miR-92, miR-93, and miR-106b) and increased expression of the TSmiRs (miR-7-1, miR-34a, and miR-99a) leading to induction of extrinsic and intrinsic pathways of apoptosis. Our data also demonstrated that overexpression of miR-93 decreased efficacy while overexpression of miR-7-1 increased efficacy of the green tea polyphenols for induction of apoptosis in both cell lines. In conclusion, our current investigation clearly indicates that overexpression of miR-7-1 can highly potentiate efficacy of EGCG for induction of apoptosis in human malignant neuroblastoma cells.

Neurochem Res. 2013 Feb ;38(2):420-32. Epub 2012 Nov 30. PMID: 23192662


Antioxidants have been shown to significantly influence cell growth, DNA repair and mitochondrial membrane-mediated apoptosis.

Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

Int J Mol Sci. 2014 ;15(9):16226-45. Epub 2014 Sep 15. PMID: 25226533


Curcuma rhizome, a main representant of Zingiberaceae family may be a promising natural source for active compounds against malignant melanoma.

BACKGROUND: Curcuma longa Linnaeus and Zingiber officinale Roscoe are two main representatives of Zingiberaceae family studied for a wide range of therapeutic properties, including: antioxidant, anti-inflammatory, anti-angiogenic, antibacterial, analgesic, immunomodulatory, proapoptotic, anti-human immunodeficiency virus properties and anticancer effects. This study was aimed to analyse the ethanolic extracts of Curcuma rhizome (Curcuma longa Linnaeus) and Zingiber rhizome (Zingiber officinale Roscoe) in terms of polyphenols, antioxidant activity and anti-melanoma potential employing the B164A5 murine melanoma cell line.RESULTS: In order to evaluate the total content of polyphenols we used Folin-Ciocâlteu method. The antioxidant activity of the two ethanolic extracts was determined by DPPH assay, and for the control of antiproliferative effect it was used MTT proliferation assay, DAPI staining and Annexin-FITC-7AAD double staining test. Results showed increased polyphenols amount and antioxidant activity for Curcuma rhizome ethanolic extract. Moreover, 100 μg/ml of ethanolic plant extract from both vegetal products presented in a different manner an antiproliferative, respectively a proapoptotic effect on the selected cell line.CONCLUSIONS: The study concludes that Curcuma rhizome may be a promising natural source for active compounds against malignant melanoma.

Biol Res. 2015 Jan 12 ;48(1):1. Epub 2015 Jan 12. PMID: 25654588


COMT inhibition may increase the anti-cancer properties of tea polyphenols and the combination may serve as a novel approach or supplemental treatment for breast cancer chemotherapy.

Tea is one of the most popular beverages in the world and has been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. (-)-Epigallocatechin gallate [(-)-EGCG], a major component in green tea, is unstable under physiological conditions and methylation of (-)-EGCG by catechol-Omicron-methyltransferase (COMT) is a modification that reduces the biological activity of (-)-EGCG. In the current study, we hypothesized that suppression of COMT activity in human breast cancer cells could increase the proteasome-inhibitory potency of (-)-EGCG and therefore enhance its tumor cell growth-inhibitory activity. We first determined the COMT genotype and basal levels of COMT activity in various human breast cancer cell lines. Furthermore, when breast cancer MDA-MB-231 cells containing high COMT activity were tested, the diminished COMT activity apparently increased the effectiveness of (-)-EGCG via augmented proteasome inhibition and apoptosis induction. This study supplements the previous findings that methylated (-)-EGCG is less bioactive and supports the notion that COMT inhibition may increase the anti-cancer properties of tea polyphenols and the combination may serve as a novel approach or supplemental treatment for breast cancer chemotherapy.

Oncol Rep. 2010 Aug ;24(2):563-9. PMID: 20596647


EGCG is a potent apoptosis inducer that functions exclusively through a p53-dependent pathway in A549 cells.

The effects of green tea polyphenols on cultured cancer cells have been well characterized, especially the effects of epigallocatechin-3-gallate (EGCg), since EGCg suppresses oncogenic signaling pathways and induces cell cycle arrest or apoptosis by regulating cell cycle-associated proteins. In the present study, we attempted to identify signaling pathways or target molecules regulated by each of or a mixture of green tea polyphenols, including epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), and EGCg, in the human lung cancer cell line A549. ECg, EGC, and a catechin mixture, in addition to EGCg, significantly decreased cell viability. In contrast, caspase 3/7 activity, an apoptosis indicator, was specifically induced by EGCg. By conducting a series of luciferase-based reporter assays, we revealed that the catechin mixture only up-regulates the p53 reporter. EGCg was a more potent inducer of p53-dependent transcription, and this induction was further supported by the induced level of p53 protein. RNA interference (RNAi)-mediated p53 knockdown completely abolished EGCg-induced apoptosis. Finally, a proteome and western blot analysis using approximately 70 different antibodies failed to detect up-regulated proteins in catechin mixture-treated A549 cells. Taken together, these results indicate that EGCg, among several green tea polyphenols, is a potent apoptosis inducer that functions exclusively through a p53-dependent pathway in A549 cells.

Toxicol In Vitro. 2009 Aug ;23(5):834-9. Epub 2009 May 3. PMID: 19406223


Curcumin and epigallocatechin-3-gallate in combination could enhance the toxicity of DOX and increase the intracellular level of DOX in resistant MCF-7 cells.

Drug resistance remains an on-going challenge in breast cancer chemotherapy. Combination of two or more drugs is an effective strategy to access context-specific multiple targets and overcome undesirable toxicity that is almost inevitable in single-drug chemotherapy. Many plant food-derived polyphenolic compounds have been proven to modulate many key factors responsible for cancer drug resistance, which makes them a promising group of low toxicity candidates for reversing cancer resistance. In this study, we analyzed the combination effect of two chemopreventive polyphenols, curcumin (Cur) and epigallocatechin-3-gallate (EGCG), in combating resistant breast cancer. Our present results showed that EGCG significantly enhanced the growth inhibition and apoptosis in both doxorubicin (DOX)-sensitive and resistant MCF-7 cells induced by Cur. The mechanism may be related to the further activation of caspase-dependent apoptotic signaling pathways and the enhanced cellular incorporation of Cur by inhibiting P-glycoprotein (P-gp) pump function. Moreover, Cur and EGCG in combination could enhance the toxicity of DOX and increase the intracellular level of DOX in resistant MCF-7 cells. Our findings with this practical combination of Cur and EGCG encourage us to move on to a promising strategy for successful treatment of human breast cancer resistance by combining two low-toxic chemotherapeutic agents from diet.

Am J Chin Med. 2014 ;42(5):1279-300. PMID: 25242081

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019, Journal Articles copyright of original owners, MeSH copyright NLM.