Search for Abstracts using Keywords

51,427 Abstracts & Growing Daily. Sourced from the US National Library of Medicine.


At least five servings of vegetables and fruit daily appear protective against breast cancer recurrence.

Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli), and fruit (apples, citrus). At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5-10 g daily) and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.

Nutrients. 2016 ;8(9). Epub 2016 Sep 6. PMID: 27608040


Quercus Suber L. Cork Extracts Induce Apoptosis in Human Myeloid Leukaemia HL-60 Cells.

Quercus suber L. cork contains a diversity of phenolic compounds, mostly low molecular weight phenols. A rising number of reports support with convergent findings that polyphenols evoke pro-apoptotic events in cancerous cells. However, the literature related to the anti-cancer bioactivity of Q. suber L. cork extractives (QSE) is still limited. Herein, we aim to describe the antitumor potential displayed by cork extractives obtained by different extraction methods in the human promyelocytic leukaemia cells. In order to quantify the effects of QSE on cancer cells viability, phosphatidylserine exposure, caspase-3 activity, mitochondrial membrane potential and cell cycle were evaluated. The results indicated that the QSE present a time-dependent and dose-dependent cytotoxicity in the human promyelocytic leukaemia cells. Such a noxious effect leads these leukaemia cells to their deaththrough apoptotic processes by altering the mitochondrial outer membrane potential, activating caspase-3 and externalizing phosphatidylserine. However, cells cycle progression was not affected by the treatments. This study contributes to open a new way to use this natural resource by exploiting itsanti-cancer properties. Moreover, it opens new possibilities of application of cork by-products, being more efficient in the sector of cork-based agriculture. Copyright © 2015 John Wiley&Sons, Ltd.

Phytother Res. 2015 Aug ;29(8):1180-7. Epub 2015 Jun 5. PMID: 26052936


Theaflavins suppress the growth and metastasis of human hepatocellular carcinoma.

Theaflavins, the major black tea polyphenols, have been reported to exhibit promising antitumor activities in several human cancers. However, the role of theaflavins in hepatocellular carcinoma (HCC) is still unknown. In this study, we found that theaflavins could significantly inhibit proliferation, migration, and invasion, and induce apoptosis in HCC cells in vitro. Furthermore, we found that theaflavins inhibited the growth and metastasis of HCC in an orthotopic model and a lung metastasis model. Immunohistochemical analyses and terminal deoxynucleotidyl transferase dUTP nick end-labeling assays showed that theaflavins could suppress proliferation and induce apoptosis in vivo. Theaflavins also suppressed constitutive and inducible signal transducer and activator of transcription 3 (STAT3) phosphorylation. The downstream proteins regulated by STAT3, including the antiapoptotic proteins (Bcl-2 and Survivin) and the invasion-related proteins (MMP-2, MMP-9), were also downregulated after theaflavins treatment. Theaflavins induced apoptosis by activating the caspase pathway. Together, our results suggest that theaflavins suppress the growth and metastasis of human HCC through the blockage of the STAT3 pathway, and thus may act as potential therapeutic agents for HCC.

Onco Targets Ther. 2016 ;9:4265-75. Epub 2016 Jul 14. PMID: 27478384


This study highlights the chemo-preventive and chemo-sensitizing role of curcumin in leukemia cells.

Curcumin, a polyphenolic compound isolated from the rhizomes of an herbaceous perennial plant, Curcuma longa, is known to possess anticancerous activity. However, the mechanism of apoptosis induction in cancers differs. In this study, we have (1) investigated the anticancerous activity of curcumin on REH and RS4;11 leukemia cells and (2) studied the chemo-sensitizing potential of curcumin for doxorubicin, a drug presently used for leukemia treatment. It was found that curcumin induced a dose dependent decrease in cell viability because of apoptosis induction as visualized by annexin V-FITC/ PI staining. Curcumin-induced apoptosis of leukemia cells was mediated by PARP-1 cleavage. An increased level of caspase-3, apoptosis inducing factor (AIF), cleaved PARP-1 and decreased level of Bcl2 was observed in leukemia cells after 24h of curcumin treatment. In addition, curcumin at doses lower than the IC50 value significantly enhanced doxorubicin induced cell death. Therefore, we conclude that curcumin induces apoptosis in leukemia cells via PARP-1 mediated caspase-3 dependent pathway and further may act as a potential chemo-sensitizing agent for doxorubicin. Our study highlights the chemo-preventive and chemo-sensitizing role of curcumin.

Asian Pac J Cancer Prev. 2016 ;17(8):3865-9. PMID: 27644631


This review summarizes the epigenetic mechanisms by which active compounds from Chinese herbs exert their anti-cancer effect.

Epigenetic modifications include DNA methylation, histone modification, and other patterns. These processes are associated with carcinogenesis and cancer progression. Thus, epigenetic modification-related enzymes, such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone demethylases (HDMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), as well as some related proteins, including methyl-CpG binding proteins (MBPs) and DNMT1-associated protein (DMAP 1), are considered as potential targets for cancer prevention and therapy. Numerous natural compounds, mainly derived from Chinese herbs and chemically ranging from polyphenols and flavonoids to mineral salts, inhibit the growth and development of various cancers by targeting multiple genetic and epigenetic alterations. This review summarizes the epigenetic mechanisms by which active compounds from Chinese herbs exert their anti-cancer effect. A subset of these compounds, such as curcumin and resveratrol, affect multiple epigenetic processes, including DNMT inhibition, HDAC inactivation, MBP suppression, HAT activation, and microRNA modulation. Other compounds also regulate epigenetic modification processes, but the underlying mechanisms and clear targets remain unknown. Accordingly, further studies are required.

Pharmacol Res. 2016 Sep 30. Epub 2016 Aug 30. PMID: 27697644


Punicalagin may have cancer-chemopreventive as well as cancer-chemotherapeutic effects against human ovarian cancer.

AIM: The aim of this study was to investigate the effects of punicalagin, a polyphenol isolated from Punica granatum, on human A2780 ovarian cancer cells in vitro.METHODS: The viability of human A2780 ovarian cells was evaluated using Cell Counting Kit-8 assay. Cell cycle was detected with flow cytometry analysis. The protein expression levels of Bcl-2, Bax,β-catenin, cyclin D1, survivin, tissue inhibitor of metalloproteinase (TIMP)-2, and TIMP-3 were measured using Western blot analysis. Matrix metalloproteinase (MMP)-2 and MMP-9 activity was determined with gelatin zymography. Wound healing assay was used to determine cell migration.RESULTS: Punicalagin inhibited the cell viability of A2780 cells in a dose- and time-dependent manner, and the cell cycle of A2780 cells was arrested in G1/S phase transition. The treatment also induced apoptosis as shown by the up-regulation of Bax and down-regulation of Bcl-2. On the other hand, punicalagin treatment increased the expressions of TIMP-2 and TIMP-3, decreased the activities of MMP-2 and MMP-9, and inhibited cell migration. In addition, theβ-catenin pathway was suppressed as shown by the down-regulations of β-catenin and its downstream factors including cyclin D1 and survivin.CONCLUSIONS: Punicalagin may have cancer-chemopreventive as well as cancer-chemotherapeutic effects against human ovarian cancer in humans through the inhibition ofβ-catenin signaling pathway.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in anyway or used commercially.

Int J Gynecol Cancer. 2016 Aug 19. Epub 2016 Aug 19. PMID: 27540692


A review of the absorption and metabolism process of EGCG and its anti-cancer effect in vitro and in vivo.

Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

Crit Rev Food Sci Nutr. 2016 Sep 19:0. Epub 2016 Aug 19. PMID: 27645804


Activation of autophagic flux by epigallocatechin gallate mitigates TRAIL-induced tumor cell apoptosis.

Epigallocatechin gallate (EGCG) is a major polyphenol in green tea. Recent studies have reported that EGCG can inhibit TRAIL-induced apoptosis and activate autophagic flux in cancer cells. However, the mechanism behind these processes is unclear. The present study found that EGCG prevents tumor cell death by antagonizing the TRAIL pathway and activating autophagy flux. Our results indicate that EGCG dose-dependently inhibits TRAIL-induced apoptosis and decreases the binding of death receptor 4 and 5 (DR4 and 5) to TRAIL. In addition, EGCG activates autophagy flux, which is involved in the inhibition of TRAIL cell death. We confirmed that the protective effect of EGCG can be reversed using genetic and pharmacological tools through re-sensitization to TRAIL. The inhibition of autophagy flux affects not only the re-sensitization of tumor cells to TRAIL, but also the restoration of death receptor proteins. This study demonstrates that EGCG inhibits TRAIL-induced apoptosis through the manipulation of autophagic flux and subsequent decrease in number of death receptors. On the basis of these results, we suggest further consideration of the use of autophagy activators such as EGCG in combination anti-tumor therapy with TRAIL.

Oncotarget. 2016 Aug 25. Epub 2016 Aug 25. PMID: 27582540


The present review explores the potential anti-metastatic mechanisms of curcumin.

Cancer is the leading cause of death worldwide. Although cancer occurs as a localized disease, its morbidity and mortality rates remain high due to the ability of cancer cells to break-off from the primary tumor and spread to distant organs. Currently, chemotherapy is the main treatment for cancer; however, the increase in proportion of drug-resistant cancer cells and unpleasant side-effects of chemotherapy are still the major challenges in cancer therapy. Curcumin is a natural polyphenol compound and the main bioactive constituent of Indian spice turmeric, widely used in Indian and Chinese medicines. Curcumin has well-known therapeutic actions, including anti-inflammatory, anti-microbial, anti-oxidant and anti-cancer properties. Curcumin induces cancer cell apoptosis through regulating various signaling pathways and arresting tumor cell cycle. Curcumin's therapeutic/ preventative actions on metastatic cancers have not been yet fully understood and studied. The present review explores the potential anti-metastatic mechanisms of curcumin, including inhibition of transcription factors and their signaling pathways (e.g., NF-κB, ApP-1 and STAT3), inflammatory cytokines (e.g., CXCL1, CXCL2, IL-6, IL-8), multiple proteases (e.g., uPA, MMPs), multiple protein kinases (e.g., MAPKs, FAK), regulation of miRNAs (e.g., miR21, miR181b) and heat shock proteins (HLJ1). In addition, possible synergistic actions of combination therapy of curcumin with current chemotherapies are discussed in this review.

Anticancer Res. 2016 Nov ;36(11):5639-5647. PMID: 27793885


Ellagic acid may exert a broader spectrum of health benefits than has been demonstrated to date.

Ellagic acid (EA) is a naturally occurring polyphenol found in some fruits and nuts, including berries, pomegranates, grapes, and walnuts. EA has been investigated extensively because of its antiproliferative action in some cancers, along with its anti-inflammatory effects. A growing body of evidence suggests that the intake of EA is effective in attenuating obesity and ameliorating obesity-mediated metabolic complications, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this review, we summarize how intake of EA regulates lipid metabolism in vitro and in vivo, and delineate the potential mechanisms of action of EA on obesity-mediated metabolic complications. We also discuss EA as an epigenetic effector, as well as a modulator of the gut microbiome, suggesting that EA may exert a broader spectrum of health benefits than has been demonstrated to date. Therefore, this review aims to suggest the potential metabolic benefits of consumption of EA-containing fruits and nuts against obesity-associated health conditions.

Adv Nutr. 2016 Sep ;7(5):961-72. Epub 2016 Aug 15. PMID: 27633111


Gallic acid is effective in the inhibition of proliferation and induction of apoptosis in Jurkat cell line.

Leukemia is known as the world's fifth most prevalent cancer. New cytotoxic drugs have created considerable progress in the treatment, but side effects are still the important cause of mortality. Plant derivatives have been recently considered as important sources for the treatment of various diseases, including cancer. Gallic acid (GA) is a polyhydroxyphenolic compound with a wide range of biological functions. The aim of the present study was to evaluate the effect of GA on proliferation inhibition and apoptosis induction of a lymphoblastic leukemia cell line. Jurkat cell (C121) line was cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS) with different concentrations of GA (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100μM) for 24, 48 and 72 hours. The effect of GA on cell viability was measured using MTS assay. Induction of apoptosis was evaluated with Annexin V-FITC/PI kit and flow cytometry. Data were analyzed by SPSS version 20 using Kruskal-Wallis and Dunn's multiple comparison tests. Decline of cell viability to less than 50% was observed at 60.3±1.6, 50.9±1.5, and 30.9±2.8 μM concentration after 24, 48, and 72 hours incubation, respectively. All concentrations of GA (10, 30, 50 and 80 μM) enhanced apoptosis compared to the control (P

Iran J Med Sci. 2016 Nov ;41(6):525-530. PMID: 27853333


These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells.

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulating cell survival and death. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with anti-tumor activities, but it was found to induce cytoprotective ROS/RNS in human breast cancer MCF-7 cells. Furthermore, treatment with silibinin down-regulates ERα expression in MCF-7 cells, and inducing both autophagy and apoptosis. In this study we explored the relationship between ER-associated pathways and RNS/ROS in MCF-7 cells. We also investigated the molecular mechanisms underlying the reciprocal regulation between ROS/RNS levels and autophagy in the death signaling pathways in silibinin-treated MCF-7 cells. Silibinin (100-300 μmol/L) dose-dependently increased ROS/RNS generation in MCF-7 cells (with high expression of ERα and low expression of ERβ) and MDA-MB-231 cells (with low expression of ERα and high expression of ERβ). Scavenging ROS/RNS significantly enhanced silibinin-induced death of MCF-7 cells, but not MDA-MB231 cells. Pharmacological activation or blockade of ERα in MCF-7 cells significantly enhanced or decreased, respectively, silibinin-induced ROS/RNS generation, whereas activation or block of ERβ had no effect. Insilibinin-treated MCF-7 cells, exposure to the ROS/RNS donators decreased the autophagic levels, whereas inhibition of autophagy with 3-MA significantly increased ROS/RNS levels. We further showed that increases in ROS/RNS generation, ERα activation or autophagy down-regulation had protective rolesin silibinin-treated MCF-7 cells. Under a condition of ERα activation, scavenging ROS/RNS or stimulating autophagy enhanced the cytotoxicity of silibinin. These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells: one involves the down-regulationof ERα and thereby augmenting the pro-apoptotic autophagy downstream, leading to cell death; the other involves the up-regulation of pro-survival ROS/RNS; and that the generation of ROS/RNS and autophagy form a negative feedback loop whose balance is regulated by ERα.

Acta Pharmacol Sin. 2016 Nov 21. Epub 2016 Nov 21. PMID: 27867187


The indirect removal of UVB damaged keratinocytes by herbal tea extracts via apoptosis may find application in the prevention of photo-induced inflammation.

Ultraviolet B (UVB) radiation is one of the major predisposing risk factors of skin cancer. The anticancer and photoprotective effects of unoxidized rooibos (Aspalathus linearis) and honeybush (Cyclopia) herbal teas, containing high levels of dihydrochalones and xanthones, respectively, have been demonstrated in skin cancer models in vivo. In the current study, the anti-inflammatory effects of methanol and aqueous extracts of these herbal teas were investigated in a UVB/HaCaT keratinocyte model with intracellular interleukin-1α (icIL-1α) accumulation as a biomarker. Extracts of green tea (Camellia sinensis) served as benchmark. Both extracts of green tea and rooibos, as well as the aqueous extract of C. intermedia, enhanced UVB-induced inhibition of cell viability, proliferation and induction of apoptosis, facilitatingthe removal of icIL-1α. The underlying mechanisms may involve mitochondrial dysfunction exhibiting pro-oxidant responses via polyphenol-iron interactions. The methanol extracts of honeybush, however, protected against UVB-induced reduction of cell growth parameters, presumably via antioxidant mechanisms that prevented the removal of highly inflamed icIL-1α-containing keratinocytes via apoptosis. The dual antioxidant and/or pro-oxidant role of the polyphenolic herbal tea constituents should be considered in developing preventive strategies against UVB-induced skin carcinogenesis. The indirect removal of UVB damaged keratinocytes by herbal tea extracts via apoptosis may find application in the prevention of photo-induced inflammation.

Molecules. 2016 Oct 2 ;21(10). Epub 2016 Oct 2. PMID: 27706097


A review of curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers

Curcumin, the bioactive polyphenolic ingredient of turmeric, has been extensively studied for its effects on human papilloma virus (HPV) infection as well as primary and malignant squamous cervical cancers. HPV infections, especially those related to HPV 16 and 18 types, have been established as the leading cause of cervical cancer; however, there are also additional contributory factors involved in the etiopathogenesis of cervical cancers. Curcumin has emerged as having promising chemopreventive and anticancer effects against both HPV-related and nonrelated cervical cancers. In this review, we first discuss the biological relevance of curcumin and both its pharmacological effects and pharmaceutical considerations from a chemical point of view. Next, the signaling pathways that are modulated by curcumin and are relevant to the elimination of HPV infection and treatment of cervical cancer are discussed. We also present counter arguments regarding the effects of curcumin on signaling pathways and molecular markers dysregulated by benzo(a)pyrene (Bap), a carcinogen found in pathological cervical lesions of women who smoke frequently, and estradiol, as two important risk factors involved in persistent HPV-infection and cervical cancer. Finally, various strategies to enhance the pharmacological activity and pharmacokinetic characteristics of curcumin are discussed with examples of studies in experimental models of cervical cancer.© 2016 BioFactors, 2016.

Biofactors. 2016 Nov 29. Epub 2016 Nov 29. PMID: 27896883


EGCG exerts significant anti-proliferative effects against renal cell cancer and malignant melanoma cells in vitro.

: e22101 Background: GTE and Epigallocatechin 3-gallate (EGCG), the most abundant polyphenol in GTE, have been shown to exert inhibitory effects on carcinogenesis; modulatory effects on tumor proliferation and differentiation; and immunomodulatory effects on tumor immunity in different pre-clinical models. These pluripotent effects suggest that GTE may have clinical activity that could be exploited for treatment of chemo-insensitive but immunologically responsive tumors. Thus, the present study investigated the effects of EGCG on the proliferation and immunologic sensitivity of human renal cell cancer (RCC) and malignant melanoma (MM) cell lines.METHODS: Human RCC (769-P) and MM (A375) cell lines were tested following incubation in media± 21.8μM EGCG, a pharmacologically-achievable concentration produced by 8, 200mg capsules GTE daily. Tumor proliferation was assessed by MTS assay; lytic sensitivity to IL2-activated human peripheral blood lymphocytes (IL2PBL) by (51)Chromium release assay; and gene expression by quantitative RT-PCR assay.RESULTS: EGCG produced significant inhibition of proliferation of both RCC and MM cells (61.5% and 67.3% of media control values respectively; p

J Clin Oncol. 2009 May 20 ;27(15_suppl):e22101. PMID: 27963498


A pinecone water extract induced apoptosis associated with caspase-3 activation in A549, H1264, H1299, and Calu-6 lung cancer cells.

Pinecones from Pinus koraiensis Siebold&Zucc. (Pinaceae), which have historically been treated as an undesired waste by-product in the processing of seeds, have recently been shown to contain ingredients with potent biological activities, such as polyphenols exhibiting anti-tumor activity. With this study, we seek to broaden our understanding of anti-tumor compounds contained in these pinecones beyond just polyphenols. We found that the water extract of P. koraiensis pinecones exhibits significant anti-cancer activity, with IC50 values ranging from 0.62 to 1.73 mg/mL in four human lung cancer cell lines, A549, H1264, H1299, and Calu-6, irrespective of their p53 status. We also demonstrate that pinecone water extract induces apoptosis associated with caspase-3 activation in the same cancer cell lines. Chemical investigation of the pinecone water extract revealed eight main components (1-8), and their structures were identified as dehydroabietic acid (1), 15-hydroxy-7-oxodehydroabietic acid (2), 7β,15-dihydroxydehydroabietic acid (3), β-D-glucopyranosyl labda-8(17,13)-diene-(15,16)-lactone-19-oate (4), 7α,15-dihydroxydehydroabietic acid (5), (1S,2S,4R)-(+)-limonene-1,2-diol (6), sobrerol (7), and 4-hydroxy-benzoic acid (8). These findings suggest a novel biological application of P. koraiensis pinecones in combatting human lung cancer, and further identify the major compounds that could contribute to this anti-cancer activity. This article is protected by copyright. All rights reserved.

Chem Biodivers. 2016 Dec 27. Epub 2016 Dec 27. PMID: 28027428


P. eldarica could be considered as a potential cytotoxic candidate.

Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were:β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extractshowed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica. Therefore, P. eldarica might have a good potentialfor active anticancer agents.

Res Pharm Sci. 2016 Dec ;11(6):476-483. PMID: 28003841


Curcumin is a potentially powerful tool to reverse cisplatin-induced toxicity.

Curcumin is a naturally occurring polyphenol isolated from Curcuma longa that has gained considerable interest over the last decades due to its beneficial effects for human health. Moreover, the usage of cisplatin, a platinum-based chemotherapeutic, is associated with several adverse effects affecting the quality of life of the patients. Also, cisplatin therapy is jeopardized by a great challenge of resistance which reduces the efficacy of this drug. In order to conquer these dark sides of cisplatin therapy, curcumin has been widely used to fight against cisplatin-resistant cancer cells and decrease its unwanted side effects (e.g. ototoxicity, nephrotoxicity and neurotoxicity). In this review, we provide a summary of the studies done to show the protective effects of curcumin against cisplatin failure and toxicity.

Pharmacol Res. 2016 Dec 29. Epub 2016 Dec 29. PMID: 28042086


Lotus leaf extract might be useful for treatment in therapy-resistance triple negative breast cancer.

ETHNOPHARMACOLOGICAL RELEVANCE: Nelumbo nucifera Gaertn (Nymphaeaceae) has been recognized as a medicinal plant, which was distributed throughout the Asia. The aqueous extract of Nelumbo nucifera leaves extract (NLE) has various biologically active components such as polyphenols, flavonoids, oligomeric procyanidines. However, the role of NLE in breast cancer therapy is poorly understood.THE AIM OF THIS STUDY: The purpose of this study was to identify the hypothesis that NLE can suppress tumor angiogenesis and metastasis through CTGF (connective tissue growth factor), which has been implicated in tumor angiogenesis and progression in breast cancer MDA-MB-231 cells.RESULTS: We examined the effects of NLE on angiogenesis in the chicken chorioallantoic membrane (CAM) model. The data showed that NLE could reduce the chorionic plexus at day 17 in CAM and the duration of this inhibition was dose-dependent. In Xenograft model, NLE treatment significantly reduced tumor weight and CD31 (capillary density) over control, respectively. We examined the role of angiogenesis involved restructuring of endothelium using human umbilical vein endothelial cell (HUVEC) in Matrigel angiogenesis model. The results indicated that vascular-like structure formation was further blocked by NLE treatment. Moreover, knockdown of CTGF expression markedly reduced the expression of MMP2 as well as VEGF, and attenuated PI3K-AKT-ERK activation, indication that these signaling pathways are crucial in mediating CTGF function.CONCLUSION: The present results suggest that NLE might be useful for treatment in therapy-resistance triple negative breast cancer.

J Ethnopharmacol. 2016 Jul 21 ;188:111-22. Epub 2016 May 10. PMID: 27178635


High altitude saxicolous lichens can be an interesting source of new antioxidative substrates.

Fourteen saxicolous lichens from trans-Himalayan Ladakh region were identified by morpho-anatomical and chemical characteristics. The n-hexane, methanol and water extracts of the lichens were evaluated for their antioxidant capacities. The lichen extracts showing high antioxidant capacities and rich phenolic content were further investigated to determine their cytotoxic activity on human HepG2 and RKO carcinoma cell lines. The ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities andβ-carotene-linoleic acid bleaching property exhibited analogous results where the lichen extracts showed high antioxidant action. The lichen extracts were also found to possess good amount of total proanthocyanidin, flavonoid and polyphenol. The methanolic extract of Lobothallia alphoplaca exhibited highest FRAP value. Methanolic extract of Xanthoparmelia stenophylla showed the highest ABTS radical scavenging capacity. The n-hexane extract of Rhizoplaca chrysoleuca exhibited highest DPPH radical scavenging capacity. Highest antioxidant capacity in terms of β-carotene linoleic acid bleachingproperty was observed in the water extract of Xanthoria elegans. Similarly, Melanelia disjuncta water extract showed highest NO scavenging capacity. Among n-hexane, methanol and water extracts of all lichens, the methanolic extract of Xanthoparmelia mexicana showed highest total proanthocyanidin, flavonoid and polyphenol content. From cytotoxic assay, it was observed that the methanolic extracts of L. alphoplaca and M. disjuncta were exhibiting high cytotoxic effects against cancer cell growth. Similarly, the water extract of Dermatocarpon vellereum, Umbilicaria vellea, X. elegans and M. disjuncta and the methanolic extract of M. disjuncta and X. stenophylla were found to possess high antioxidant capacities and were non-toxic and may be used as natural antioxidants for stress related problems. Our studies go on to prove that the unique trans-Himalayan lichens are a hitherto untapped bioresource with immense potential for discovery of new chemical entities, and this biodiversity needs to be tapped sustainably.

PLoS One. 2014 ;9(6):e98696. Epub 2014 Jun 17. PMID: 24937759


Physodic acid and acetone extract from H. physodes displayed cytotoxic effects in the breast cancer cell lines.

CONTEXT: Lichens produce specific secondary metabolites with different biological activity. OBJECTIVE: This study investigated the cytotoxic effects of physodic acid, in addition to the total phenolic content and cytotoxic and antioxidant activity of acetone extract from Hypogymnia physodes (L.) Nyl. (Parmeliaceae). MATERIALS AND METHODS: Cytotoxicity of physodic acid (0.1-100 μM) was assessed in MDA-MB-231, MCF-7 and T-47D breast cancer cell lines and a nontumorigenic MCF-10A cell line using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red uptake and crystal violet assays during 72 h of incubation. An MTT assay was also used to assess the cytotoxic effects of the acetone extract (0.1-100 μg/mL) in the MDA-MB-231, MCF-7, T-47D breast cancer cell lines after 72 h. The total phenolic content of the acetone extract, expressed as the gallic acid equivalent, was investigated using Folin-Ciocalteu reagent. The antioxidant activity of the extract was assessed by 2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power assays. RESULTS: The cytotoxic activity of physodic acid appeared to be strong in the tumorigenic cell lines (IC50 46.0-93.9 μM). The compound was inactive against the nontumorigenic MCF-10A cell line (IC50 >100 μM). The acetone extract showed cytotoxicity in the breast cancer cell lines (IC50 46.2-110.4 μg/mL). The acetone extract was characterized by a high content of polyphenols, and it had significant antioxidant activity. DISCUSSION AND CONCLUSION: Physodic acid and acetone extract from H. physodes displayed cytotoxic effects in the breast cancer cell lines. Furthermore, acetone extract from H. physodes possessed significant antioxidant properties.

Pharm Biol. 2016 Nov ;54(11):2480-2485. Epub 2016 Apr 6. PMID: 27049956


Many dietary phytochemicals are shown to modify and reverse aberrant epigenetic changes, potentially leading to cancer prevention or treatment.

Oxidative stress occurs when cellular reactive oxygen species levels exceed the self-antioxidant capacity of the body. Oxidative stress induces many pathological changes, including inflammation and cancer. Chronic inflammation is believed to be strongly associated with the major stages of carcinogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a crucial role in regulating oxidative stress and inflammation by manipulating key antioxidant and detoxification enzyme genes via the antioxidant response element. Many dietary phytochemicals with cancer chemopreventive properties, such as polyphenols, isothiocyanates, and triterpenoids, exert antioxidant and anti-inflammatory functions by activating the Nrf2 pathway. Furthermore, epigenetic changes, including DNA methylation, histone post-translational modifications, and miRNA-mediated post-transcriptional alterations, also lead to various carcinogenesis processes by suppressing cancer repressor gene transcription. Using epigenetic research tools, including next-generation sequencing technologies, many dietary phytochemicals are shown to modify and reverse aberrant epigenetic/epigenome changes, potentially leading to cancer prevention/treatment. Thus, the beneficial effects of dietary phytochemicals on cancer development warrant further investigation to provide additional impetus for clinical translational studies.

Chem Res Toxicol. 2016 Dec 19 ;29(12):2071-2095. Epub 2016 Dec 5. PMID: 27989132


P. sidoides has cancer cell type-specific anti-proliferative effects and may be a source of novel anticancer molecules.

Context Pelargonium sidoides DC (Geraniaceae) is an important medicinal plant indigenous to South Africa and Lesotho. Previous studies have shown that root extracts are rich in polyphenolic compounds with antibacterial, antiviral and immunomodulatory activities. Little is known regarding the anticancer properties of Pelargonium sidoides extracts. Objective This study evaluates the anti-proliferative effects of a Pelargonium sidoides radix mother tincture (PST). Materials and methods The PST was characterized by LC-MS/MS. Anti-proliferative activity was evaluated in the pre-screen panel of the National Cancer Institute (NCI-H460, MCF-7 and SF-268) and the Jurkat leukaemia cell line at concentrations of 0-150 μg/mL. The effect on cell growth was determined with sulphorhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays after 72 h. The effect on cell cycle and apoptosis induction in Jurkat cells was determined by flow cytometry with propidium iodide and Annexin V: fluorescein isothiocyanate staining. Results Dihydroxycoumarin sulphates, gallic acid as well as gallocatechin dimers and trimers were characterized in PST by mass spectrometry. Moderate anti-proliferative effects with GI50 values between 40 and 80 μg/mL were observed in the NCI-pre-screen panel. Strong activity observed with Jurkat cells with a GI50 value of 6.2 μg/mL, significantly better than positive control 5-fluorouracil (GI50 value of 9.7 μg/mL). The PST arrested Jurkat cells at the G0/G1 phase of the cell cycle and increased the apoptotic cells from 9% to 21%, while the dead cellsincreased from 4% to 17%. Conclusion We present evidence that P. sidoides has cancer cell type-specific anti-proliferative effects and may be a source of novel anticancer molecules.

Pharm Biol. 2016 Sep ;54(9):1831-40. Epub 2016 Jan 21. PMID: 26794080


Delphinidin has a potentially new role in anti angiogenic action by inhibiting HIF-1α and VEGF expression.

Delphinidin, a polyphenol that belongs to the group of anthocyanidins and is abundant in many pigmented fruits and vegetables, possesses important antioxidant, anti‑inflammatory, anti-mutagenic and anticancer properties. In the present study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) expression, an important factor involved in angiogenesis and tumor progression, in A549 human lung cancer cells. Delphinidin inhibited CoCl2- and epidermal growth factor (EGF)-induced VEGF mRNA expression and VEGF protein production. Delphinidin also decreased CoCl2- and EGF-stimulated expression of hypoxia‑inducible factor (HIF)‑1α, which is a transcription factor of VEGF. Delphinidin suppressed CoCl2- and EGF-induced hypoxia‑response element (HRE) promoter activity, suggesting that the inhibitory effects of delphinidin on VEGF expression are caused by the suppression of the binding of HIF-1 to the HRE promoter. We also found that delphinidin specifically decreased the CoCl2- and EGF-induced HIF-1α protein expression by blocking the ERK and PI3K/Akt/mTOR/p70S6K signaling pathways, whereas the p38-mediated pathways were not involved. In animal models, EGF-induced new blood vessel formation was significantly inhibited by delphinidin. Therefore, our results indicate that delphinidin has a potentially new role in anti‑angiogenic action by inhibiting HIF-1α and VEGF expression.

Oncol Rep. 2016 Dec 7. Epub 2016 Dec 7. PMID: 27959445


Peels and flesh extract of Sour-YRP significantly inhibited the proliferation of HepG2 and Hela cancer cells lines.

Plant polyphenols derived from pomegranates are natural health-promoting components, and their bioactivities are well proved. However, the systematic studies of polyphenols constituents and cytotoxic ability in fruit parts of pomegranates derived from different Chinese cultivars have not been studied yet. In this report, a validated and sensitive HPLC-DAD method and fluorescence spectrophotometric method was established for quantitative analysis of four polyphenols and total phenolic content (TPC) in fruit parts of pomegranates (including peels, flesh, seeds, juices and leaves) derived from five Chinese cultivars, respectively. HPLC analysis was performed on the YMC ODS-A C18 column with gradient elution of MeOH and 0.1 % TFA. Four polyphenols including gallic acid, ellagic acid, punicalagin A&B and punicalin A&B exhibited satisfactory linearity in the concentration ranges of 20-320, 39-624, 74-1184 and 38-608 μg/mL, respectively. The results demonstrated that the amounts of TPC and four polyphenols in different fruit parts of pomegranates varied significantly. Peels of Sour-YRP possessed the highest content of punicalagin A&B (125.23 mg/g), whereas other three polyphenols exhibited only trace. Among the five Chinese cultivars, Sour-YRP contained the highest content of TPC (688.61 mg/g) and could be considered as the desirable botanical source to obtain polyphenols. It is also discovered that low-maturity pomegranate might possessed much higher TPC than high-maturity pomegranate. The optimized HPLC-DAD method could be used for quality control of different pomegranates by identification and quantification of its main polyphenolic components. Furthermore, the in vitro cytotoxicity of different pomegranates fruit parts to cancer cells was evaluated. We discovered that peels and flesh extract of Sour-YRP significantly inhibited the proliferation of HepG2 and Hela cancer cells lines. The results of this work are promising for further investigation and development of pomegranates as therapeutic agent for the treatment ofcancer.

Springerplus. 2016 ;5(1):914. Epub 2016 Jun 29. PMID: 27386358


Resveratrol and piceatannol selectively trigger death in cancer but not somatic cells.

BACKGROUND/AIMS: Resveratrol and its derivate piceatannol are known to induce cancer cell-specific cell death. While multiple mechanisms of actions have been described including the inhibition of ATP synthase, changes in mitochondrial membrane potential and ROS levels, the exact mechanisms of cancer specificity of these polyphenols remain unclear. This paper is designed to reveal the molecular basis of the cancer-specific initiation of cell death by resveratrol and piceatannol.METHODS: The two cancer cell lines EA.hy926 and HeLa, and somatic short-term cultured HUVEC were used. Cell viability and caspase 3/7 activity were tested. Mitochondrial, cytosolic and endoplasmic reticulum Ca2+ as well as cytosolic and mitochondrial ATP levels were measured using single cell fluorescence microscopy and respective genetically-encoded sensors. Mitochondria-ER junctions were analyzed applying super-resolution SIM and ImageJ-based image analysis.RESULTS: Resveratrol and piceatannol selectively trigger death in cancer but not somatic cells. Hence, these polyphenols strongly enhanced mitochondrial Ca2+ uptake in cancer exclusively. Resveratrol and piceatannol predominantly affect mitochondrial but not cytosolic ATP content that yields in a reduced SERCA activity. Decreased SERCA activity and the strongly enriched tethering of the ER and mitochondria in cancer cells result in an enhanced MCU/Letm1-dependent mitochondrial Ca2+ uptake upon intracellular Ca2+ release exclusively in cancer cells. Accordingly, resveratrol/piceatannol-induced cancer cell death could be prevented by siRNA-mediated knock-down of MCU and Letm1.CONCLUSIONS: Because their greatly enriched ER-mitochondria tethering, cancer cells are highly susceptible for resveratrol/piceatannol-induced reduction of SERCA activity to yield mitochondrial Ca2+ overload and subsequent cancer cell death.

Cell Physiol Biochem. 2016 ;39(4):1404-20. Epub 2016 Sep 9. PMID: 27606689


Animal experimentation and cocoa interventions in humans support the anti-inflammatory effect of cocoa compounds.

Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts.

Nutrients. 2016 Apr 9 ;8(4):212. Epub 2016 Apr 9. PMID: 27070643


Baicalein and luteolin could inhibit proliferation and induce apoptosis in colon cancer cells.

Due to the type-specific diversity of cancer cells, an analysis and elucidation of molecular mechanisms responsible for anticancer properties of biologically active compounds are essential. Plant-derived polyphenolic compounds such as flavonoids may be useful in cancer chemoprevention or treatment because they influence diverse molecular pathways in cancer cells. In these studies anticancer activity of natural occurring flavones, baicalein and luteolin was investigated in colon cancer cells LoVo and in their drug resistant subline LoVo/Dx. Inhibitory activity of these flavones on cells growth and their ability to induce apoptosis were observed. A less pronounced influence of studied flavones on proliferation and apoptosis of LoVo/Dx as compared with LoVo cells well correlated with significantly lower cytotoxicity of these compounds in drug-resistant cells. These effects may be related to overexpression of multidrug transporter P-glycoprotein in drug-resistant LoVo/Dx cells. Our studies indicated that baicalein could be a substrate of this drug transporter.

Biomed Pharmacother. 2017 Jan 19 ;88:232-241. Epub 2017 Jan 19. PMID: 28110189


The present knowledge on the role of flavonoids in chemoprevention can be used in developing effective dietary strategies.

Carcinogenesis is a multistage process that involves a series of events comprising of genetic and epigenetic changes leading to the initiation, promotion and progression of cancer. Chemoprevention is referred to as the use of nontoxic natural compounds, synthetic chemicals or their combinations to intervene in multistage carcinogenesis. Chemoprevention through diet modification, i.e., increased consumption of plant-based food, has emerged as a most promising and potentially cost-effective approach to reducing the risk of cancer. Flavonoids are naturally occurring polyphenols that are ubiquitous in plant-based food such as fruits, vegetables and teas as well as in most medicinal plants. Over 10,000 flavonoids have been characterized over the last few decades. Flavonoids comprise of several subclasses including flavonols, flavan-3-ols, anthocyanins, flavanones, flavones, isoflavones and proanthocyanidins. This review describes the most efficacious plant flavonoids, including luteolin, epigallocatechin gallate, quercetin, apigenin and chrysin; their hormetic effects; and the molecular basis of how these flavonoids contribute to the chemoprevention with a focus on protection against DNA damage caused by various carcinogenic factors. The present knowledge on the role of flavonoids in chemoprevention can be used in developing effective dietary strategies and natural health products targeted for cancer chemoprevention.

J Nutr Biochem. 2016 Nov 28 ;45:1-14. Epub 2016 Nov 28. PMID: 27951449


Fermented chamomile with Lactobacillus plantarum has improved antioxidative and cytotoxic activities.

Antioxidative and cytotoxic effects of chamomile (Matricaria chamomilla) fermented by Lactobacillus plantarum were investigated to improve their biofunctional activities. Total polyphenol (TP) content was measured by the Folin-Denis method, and the antioxidant activities were assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method andβ-carotene bleaching method. AGS, HeLa, LoVo, MCF-7, and MRC-5 (normal) cells were used to examine the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The TP content of fermented chamomile reduced from 21.75 to 18.76 mg gallic acid equivalent (mg GAE)/g, but the DPPH radical capturing activity of fermented chamomile was found to be 11.1% higher than that of nonfermented chamomile after 72 h of fermentation. Following the β-carotene bleaching, the antioxidative effect decreased because of a reduction in pH during fermentation. Additionally, chamomile fermented for 72 h showed a cytotoxic effect of about 95% against cancer cells at 12.7 mg solid/ml of broth, but MRC-5 cells were significantly less sensitive against fermented chamomile samples. These results suggest that the fermentation of chamomile could be applied to develop natural antioxidativeand anticancer products.

J Zhejiang Univ Sci B. 2017 Feb.;18(2):152-160. PMID: 28124843


Quercetin induces MiR-200b-3p which could inhibit cancer stem cells self-renewal and proliferation.

BACKGROUND: Cancer stem cells are suggested to contribute to the extremely poor prognosis of pancreatic ductal adenocarcinoma and dysregulation of symmetric and asymmetric stem cell division may be involved. Anticancer benefits of phytochemicals like the polyphenol quercetin, present in many fruits, nuts and vegetables, could be expedited by microRNAs, which orchestrate cell-fate decisions and tissue homeostasis. The mechanisms regulating the division mode of cancer stem cells in relation to phytochemical-induced microRNAs are poorly understood.METHODS: Patient-derived pancreas tissue and 3 established pancreatic cancer cell lines were examined by immunofluorescence and time-lapse microscopy, microRNA microarray analysis, bioinformatics and computational analysis, qRT-PCR, Western blot analysis, self-renewal and differentiation assays.RESULTS: We show that symmetric and asymmetric division occurred in patient tissues and in vitro, whereas symmetric divisions were more extensive. By microarray analysis, bioinformatics prediction and qRT-PCR, we identified and validated quercetin-induced microRNAs involved in Notch signaling/cell-fate determination. Further computational analysis distinguished miR-200b-3p as strong candidate for cell-fate determinant. Mechanistically, miR-200b-3p switched symmetric to asymmetric cell division by reversing the Notch/Numb ratio, inhibition of the self-renewal and activation of the potential to differentiate to adipocytes, osteocytes and chondrocytes. Low miR-200b-3p levels fostered Notch signaling and promoted daughter cells to become symmetric while high miR-200b-3p levels lessened Notch signaling and promoted daughter cells to become asymmetric.CONCLUSIONS: Our findings provide a better understanding of the cross talk between phytochemicals, microRNAs and Notch signaling in the regulation of self-renewing cancer stem cell divisions.

Mol Cancer. 2017 Jan 31 ;16(1):23. Epub 2017 Jan 31. PMID: 28137273


Phytochemicals which inhibit cancer stem cells may prove to be promising agents for the prevention and treatment of pancreatic cancers.

Pancreatic ductal adenocarcinoma is one of the deadliest cancers worldwide and the fourth leading cause of cancer-related deaths in United States. Regardless of the advances in molecular pathogenesis and consequential efforts to suppress the disease, this cancer remains a major health problem in United States. By 2030, the projection is that pancreatic cancer will be climb up to be the second leading cause of cancer-related deaths in the United States. Pancreatic cancer is a rapidly invasive and highly metastatic cancer, and does not respond to standard therapies. Emerging evidence support that the presence of a unique population of cells called cancer stem cells (CSCs) as potential cancer inducing cells and efforts are underway to develop therapeutic strategies targeting these cells. CSCs are rare quiescent cells, and has the capacity to self-renew through asymmetric/symmetric cell division, as well as differentate into various lineages of cells in the cancer. Studies have been shown that CSCs are highly resistant to standard therapy and also responsible for drug resistance, cancer recurrence and metastasis. To overcome of this problem, we need novel preventive agents that target these CSCs. Natural compounds or phytochemicals have ability to target for these CSCs and their signaling pathways. Therefore, in the present review article, we summarize our current understanding of pancreatic CSCs and their signaling pathways, and the phytochemicals that target these cells including curcumin, resveratrol, tea polyphenol EGCG (epigallocatechin-3-gallate), crocetinic acid, sulforaphane, genistein, indole-3-carbinol, vitamin Eδ-tocotrienol, Plumbagin, quercetin, triptolide, Licofelene and Quinomycin. These natural compounds or phytochemicals, which inhibit cancer stem cells may prove to be promising agents for the prevention and treatment of pancreatic cancers.

Curr Med Chem. 2017 Jan 26. Epub 2017 Jan 26. PMID: 28137215


The anthocyanins, proanthocyanidins, and flavonol glycosides within the cranberry extract have a synergistic or additive antiproliferative effect.

Cranberries (Vaccinium macrocarpon Ait.) are an excellent dietary source of phytochemicals that include flavonol glycosides, anthocyanins, proanthocyanidins (condensed tannins), and organic and phenolic acids. Using C-18 and Sephadex Lipophilic LH-20 column chromatography, HPLC, and tandem LC-ES/MS, the total cranberry extract (TCE) has been analyzed, quantified, and separated into fractions enriched in sugars, organic acids, total polyphenols, proanthocyanidins, and anthocyanins (39.4, 30.0, 10.6, 5.5, and 1.2% composition, respectively). Using a luminescent ATP cell viability assay, the antiproliferative effects of TCE (200 microg/mL) versus all fractions were evaluated against human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620), and prostate (RWPE-1, RWPE-2, 22Rv1) cancer cell lines. The total polyphenol fraction was the most active fraction against all cell lines with 96.1 and 95% inhibition of KB and CAL27 oral cancer cells, respectively. For the colon cancer cells, the antiproliferative activity of this fraction was greater against HCT116 (92.1%) than against HT-29 (61.1%), SW480 (60%), and SW620 (63%). TCE and all fractions showed>/=50% antiproliferative activity against prostate cancer cells with total polyphenols being the most active fraction (RWPE-1, 95%; RWPE-2, 95%; 22Rv1, 99.6%). Cranberry sugars (78.8 microg/mL) did not inhibit the proliferation of any cancer cell lines. The enhanced antiproliferative activity of total polyphenols compared to TCE and its individual phytochemicals suggests synergistic or additive antiproliferative interactions of the anthocyanins, proanthocyanidins, and flavonol glycosides within the cranberry extract.

J Agric Food Chem. 2004 May 5 ;52(9):2512-7. PMID: 15113149


Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells.

Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectivelyinhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.

Oncotarget. 2017 Jan 25. Epub 2017 Jan 25. PMID: 28135203


Caffeic acid and caffeic acid phenethyl ester Induction of cell cycle arrest and apoptotic response of head and neck squamous carcinoma cells.

Natural polyphenols have been observed to possess antiproliferative properties. The effects, including apoptotic potential of bioactive phenolic compounds, caffeic acid (CA) and its derivative caffeic acid phenethyl ester (CAPE), on cell proliferation and apoptosis in human head and neck squamous carcinoma cells (HNSCC) line (Detroit 562) were investigated and compared. Cancer cells apoptosis rates and cell cycle arrests were analysed by flow cytometry. Exposure to CA and CAPE was found to result in a dose-dependent decrease in the viability of Detroit 562 cells at different levels. CA/CAPE treatment did significantly affect the viability of Detroit 562 cells (MTT results). CAPE-mediated loss of viability occurred at lower doses and was more pronounced, with the concentrations which inhibit the growth of cells by 50% estimated at 201.43 μM (CA) and 83.25 μM (CAPE). Dead Cell Assay with Annexin V labelling demonstrated that CA and CAPE treatment of Detroit 562 cells resulted in an induction of apoptosis at 50 μM and 100 μM doses. The rise of mainly late apoptosis was observed for 100 μM dose and CA/CAPE treatment didaffect the distribution of cells in G0/G1 phase. A combination of different phenolic compounds, potentially with chemotherapeutics, could be considered as an anticancer drug.

Evid Based Complement Alternat Med. 2017 ;2017:6793456. Epub 2017 Jan 12. PMID: 28167973


Pomegranate has demonstrated anti-proliferative, anti-metastatic and anti-invasive effects on various cancer cell lines.

Cancer is a pathological condition where excessive and abnormal cell growth leads to widespread invasion within the body to affect various organ functions. It is known that chemotherapeutic agents are themselves possible candidate of cancer generation as they can kill normal cells. So, therapeutic approach for cancer treatment and prevention is weighed in terms of benefit to risk ratio. Nowadays, there is an immense interest for the search herbal formulation with cancer preventive effect because of the problems, generated with existing chemotherapeutic regimens. Research interest in fruits rich in polyphenols is increasing because of their anticancer potential. In this review, we highlight the potential health benefits of pomegranate (Punica granatum) fruit and the underlying mechanism of its inhibition of cancer progression. Pomegranate has demonstrated anti-proliferative, anti-metastatic and anti-invasive effects on various cancer cell line in vitro as well as in vivo animal model or human clinical trial. Although several clinical trials are in progress for identifying the pomegranate as a candidate for various cancer treatment. It is necessary to replicate and validate its therapeutic efficacy by multiple clinical studies in order to formulate pomegranate products as an integral part of the dietary and pharmacological intervention in anticancer therapy. Copyright© 2017 John Wiley&Sons, Ltd.

Phytother Res. 2017 Feb 10. Epub 2017 Feb 10. PMID: 28185340


Ellagic acid can be considered as a potent agent that decreases cell proliferation.

OBJECTIVE: One of the most common malignancies among men is prostate cancer. Ellagic acid (EA), a polyphenol antioxidant, has many pharmacological actions, especially anticancer effects. The purpose of this study was to evaluate the effect of EA treatment on interleukin-6 (IL-6) gene expression, cell viability, IL-6 secretion, phosphorylated STAT3, ERK, and AKT cellular signaling proteins in human prostate cancer cells (PC3).MATERIALS AND METHODS: The cytotoxic effects of the EA (0-100µM) on PC3 cells were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. IL-6 gene expression was down, using real-time quantitative polymerase chain reaction. The cellular concentration of phosphorylated ERK1/2, AKT, and STAT3 signaling pathways was assessed by Western blotting technic.RESULTS: EA treatment of PC3 cells resulted in a reduction of cell viability and phosphorylated STAT3, ERK, and AKT signaling proteins after 72 h in a dose-dependent manner. IL-6 gene expression and IL-6 levels significantly increased (P

J Cancer Res Ther. 2016 Oct-Dec;12(4):1266-1271. PMID: 28169238


Grape seed proanthocyanidins, honokiol and EGCG appear to be promising bioactive phytochemicals for the management of head and neck cancer.

Despite the development of more advanced medical therapies, cancer management remains a problem. Head and neck squamous cell carcinoma (HNSCC) is a particularly challenging malignancy and requires more effective treatment strategies and a reduction in the debilitating morbidities associated with the therapies. Phytochemicals have long been used in ancient systems of medicine, and non-toxic phytochemicals are being considered as new options for the effective management of cancer. Here, we discuss the growth inhibitory and anti-cell migratory actions of proanthocyanidins from grape seeds (GSPs), polyphenols in green tea and honokiol, derived from the Magnolia species. Studies of these phytochemicals using human HNSCC cell lines from different sub-sites have demonstrated significant protective effects against HNSCC in both in vitro and in vivo models. Treatment of human HNSCC cell lines with GSPs, (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic component of green tea or honokiol reduced cell viability and induced apoptosis. These effects have been associated with inhibitory effects of the phytochemicals on the epidermal growth factor receptor (EGFR), and cell cycle regulatory proteins, as well as other major tumor-associated pathways. Similarly, the cell migration capacity of HNSCC cell lines was inhibited. Thus, GSPs, honokiol and EGCG appear to be promising bioactive phytochemicals for the management of head and neck cancer.

Molecules. 2016 Nov 24 ;21(12). Epub 2016 Nov 24. PMID: 27886147


Curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells.

Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage.

Biomed Pharmacother. 2017 Feb ;86:373-380. Epub 2016 Dec 21. PMID: 28011386


Curcumin exposure reduced BPA-induced apoptosis evasion and rapid growth kinetics in all cell lines to varying degrees.

Widespread distribution of bisphenol-A (BPA) complicates epidemiological studies of possible carcinogenic effects on the breast because there are few unexposed controls. To address this challenge, we previously developed non-cancerous human high-risk donor breast epithelial cell (HRBEC) cultures, wherein BPA exposure could be controlled experimentally. BPA consistently induced activation of the mammalian target of rapamycin (mTOR) pathway--accompanied by dose-dependent evasion of apoptosis and increased proliferation--in HRBECs from multiple donors. Here, we demonstrate key molecular changes underlying BPA-induced cellular reprogramming. In 3/3 BPA-exposed HRBEC cell lines, and in T47D breast cancer cells, proapoptotic negative regulators of the cell cycle (p53, p21(WAF1) and BAX) were markedly reduced, with concomitant increases in proliferation-initiating gene products (proliferating cell nuclear antigen, cyclins, CDKs and phosphorylated pRb). However, simultaneous exposure to BPA and the polyphenol, curcumin, partially or fully reduced the spectrum of effects associated with BPA alone, including mTOR pathway proteins (AKT1, RPS6, pRPS6 and 4EBP1). BPA exposure induced an increase in the ERα (Estrogen Receptor): ERβ ratio--an effect also reversed by curcumin (analysis of variance, P

Carcinogenesis. 2013 Mar ;34(3):703-12. Epub 2012 Dec 7. PMID: 23222814


H. rosa-sinesis flower extract contains compounds that inhibit melanoma cell growth.

Skin cancer is extremely common, and melanoma causes about 80% of skin cancer deaths. In fact, melanoma kills over 50 thousand people around the world each year, and these numbers are rising. Clearly, standard treatments are not effectively treating melanoma, and alternative therapies are needed to address this problem. Hibiscus tea has been noted to have medicinal properties, including anticancer effects. Extracts from Hibiscus have been shown to inhibit the growth of a variety of cancer cells. In particular, recent studies found that polyphenols extracted from Hibiscus sabdariffa by organic solvents can inhibit melanoma cell growth. However, effects of aqueous extracts from Hibiscus rosa-sinesis flowers, which are commonly used to make traditional medicinal beverages, have not been examined on melanoma cells. Here, we report that aqueous H. rosa-sinesis flower extract contains compounds that inhibit melanoma cell growth in a dose dependent manner at concentrations that did not affect the growth of nontransformed cells. In addition, these extracts contain low molecular weight growth inhibitory compounds below 3 kD in size that combine with larger compounds to more effectively inhibit melanoma cell growth. Future work should identify these compounds, and evaluate their potential to prevent and treat melanoma and other cancers.

J Tradit Complement Med. 2017 Jan ;7(1):45-49. Epub 2016 Feb 23. PMID: 28053887


Carvacrol could be a novel and strong anticancer agent against the human gastric adenocarcinoma.

Gastric cancer (GC) is the most common cause of morbidity and mortality because of cancer. Medicinal plants containing polyphenolic compounds have gained importance in anticancer treatment. In this context, carvacrol is a main component of many plants in the family Lamiaceae that are frequently used in folk medicine and a good candidate to investigate for GC treatment. The present study aimed to explore the cytotoxic, genotoxic, apoptotic, and reactive oxygen species (ROS)-generating effects of carvacrol on gastric adenocarcinoma in vitro. For these purposes, human gastric adenocarcinoma (AGS) cells were used and analyzed after 24 h of exposure to carvacrol with different concentrations. The cytotoxicity, ROS generation, glutathione (GSH) level, and genotoxicity were investigated by the ATP cell viability assay, 2',7'-dichlorodihydrofluorescein-diacetate assay, GSH/GSSG-Glo assay, and comet assay, respectively. Apoptosis induction was detected by acridine orange/ethidium bromide staining and western blotting at below the half-maximal growth inhibitory concentration value. Carvacrol showed cytotoxic, genotoxic, apoptotic, ROS generating, and GSH-reducing effects on AGS cells in a dose-dependent manner. There was a close negative relationship between cell viability and ROS level. Carvacrol inhibited the proliferation of AGS cells, suggesting that it could be a novel and strong anticancer agent against the human gastric adenocarcinoma. These results support the interest of natural diet components in the development of therapeutic products for diseases.

Anticancer Drugs. 2017 Feb 27. Epub 2017 Feb 27. PMID: 28244942


This evaluated the antioxidant and antiproliferative effects of polyphenolic extracts obtained from old twelve varieties of endemic bean.

Beans are important dietary components with versatile health benefits. We analysed the extracts of twelve ecotypes of Phaseolus vulgaris in order to determine their phenolic profiles, antioxidant activity, and the in vitro antiproliferative activity. Ultra-performance liquid chromatography with diode array detector (UPLC-DAD) admitted us to detect and quantify some known polyphenols, such as gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol. The antioxidant activity (AA) ranged from 1.568± 0.041 to 66.572 ± 3.197 mg necessary to inhibit the activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by 50% (EC50). The extracts, except those obtained from the nonpigmented samples, were capable of inhibiting the proliferation of the human epithelial colorectal adenocarcinoma (Caco-2) cells, human breast cancer cells MCF-7, and A549 NSCLC cell line. Cultivars differed in composition and concentration of polyphenols including anthocyanins; cooking affected the antioxidant activity only marginally. Qualitative and quantitative differences in phenolic composition between the groups of beans influenced the biological activities; on the other hand, we did not find significant differences on the biological activities within the same variety, before and after cooking.

Oxid Med Cell Longev. 2016 ;2016:1398298. Epub 2016 Dec 25. PMID: 28105248


Phenolic fractions from Muscadine grape "Noble" pomace can inhibit breast cancer cell MDA-MB-231 better than those from European grape.

Tons of grape pomace which still contained a rich amount of plant polyphenols, is discarded after winemaking. Plant polyphenols have multi-functional activities for human body. In this study, polyphenols of pomaces from Muscadinia rotundifolia"Noble"and Vitis vinifera"Cabernet Sauvignon"were extracted and fractionated, and then they were analyzed with LC-MS and the inhibitory effects on breast cancer cells were compared. The inhibition on MDA-MB-231 cells of fractions from"Noble"was further evaluated. The results showed that polyphenols from 2 grape pomaces could be separated into 3 fractions, and ellagic acid and/or ellagitannins were only detected in fractions from"Noble"pomace. All 3 fractions from"Noble"pomace inhibited MDA-MB-231 better than MCF-7. But fraction 2 from"Cabernet Sauvignon"inhibited MCF-7 better while fraction 1 and fraction 3 inhibited both 2 cells similarly. Moreover, the fractions from"Noble"pomace rather than"Cabernet Sauvignon"can inhibit MDA-MB-231 better. Finally, fractions from"Noble"pomace can induce S-phase arrest and apoptosis on MDA-MB-231. These findings suggested the extracts from grape pomace especially those from"Noble,"are potential to be utilized as health beneficial products or even anti-breast cancer agents.

J Food Sci. 2017 Mar 22. Epub 2017 Mar 22. PMID: 28329437


Polyphenols of Pinus koraiensis pinecone could be a promising natural antitumor agents.

In this study, an efficient purification method for the polyphenols of Pinus koraiensis pinecone (PPP) has been developed. AB-8 resin was verified to offer good adsorption and desorption ratio for PPP. Response surface methodology (RSM) indicated that the optimized purification parameters for PPP were 1.70 mg GAE/mL phenolic sample concentration, 22.00 mL sample volume, and 63.00% ethanol concentration. Under these conditions, the experimental purity of PPP was 27.93± 0.14% (n = 3), which matched well with the predicted purity of 28.17%. Next, the antiproliferative effects of PPP on seven cancer cell lines, including A375 (human skin melanoma cancer cell line), A549 (human lung cancer cell line), SH-SY5Y (human neuroblastoma cell line), LOVO (human colon cancer stem cell line), MCF-7 (human breast cancer cell line), HeLa (human cervical cancer line), and HT29 (human colon cancer line), were examined by MTT assays. The results indicated that PPP had the highest capacity for inhibiting LOVO cells growth with an EC50 value of 0.317 ± 0.0476 mg/mL. Finally,Ultra-high performance liquid chromatography- tandem mass spectrometry (UPLC-MS) was used to tentatively identify twenty-four peaks in the purified PPP, of which five representative peaks were identified as catechin, methyl quercetin, o-vanillin, luteolin and coronaric acid. Our results demonstratethat Pinus koraiensis pinecone is a readily available source of polyphenols, and the purified PPP could be a promising natural antitumor agent for applications in functional foods.

Molecules. 2015 Jun 5 ;20(6):10450-67. Epub 2015 Jun 5. PMID: 26056816


Recent studies have documented that pharmacological effects of curcumin in lung cancer are also mediated by modulation of several miRNAs.

BACKGROUND: Lung cancer is one of the most common types of cancer worldwide and is characterized by a poor prognosis, related both to late diagnosis and lack of effective treatments. In the last years, microRNAs (miRNAs) have been demonstrated to have an important role in tumor microenvironment and immune regulation. These RNAs can be categorized into tumor-suppressor genes, such as let-7 family and miR-34, and oncogenes such as miR-221 and miR-222. Curcumin is a bioactive polyphenol that is documented to have promising anti-cancer activity, and to be well tolerated in humans.METHODS: The present review aims to gather available evidence on the involvement of mRNAs in the therapeutic effects of curcumin against lung cancer.RESULTS: The anti-cancer properties of curcumin against lung cancer have been shown in both cellular and experimental models and are mediated by modulation of several molecular targets that regulate the expression of transcription factors, inflammatory cytokines, enzymes, growth factors, receptors, adhesion molecules, antiapoptotic proteins, and cell cycle proteins, leading to cell apoptosis, inhibition of cell proliferation and migration, and also chemo- and radio-sensitization of lung cancer cells. Recent studies have documented that pharmacological effects of curcumin in lung cancer are also mediated by modulation of several miRNAs, such as downregulation of oncogenic miR-21 and upregulation of oncosuppressive miR-192-5p and miR-215.CONCLUSION: Further studies are necessary to explore this very promising field and the link between regulation of oncogenic and tumor-suppressive miRNAs and putative anti-cancer properties of curcumin.

Curr Pharm Des. 2017 Jan 9. Epub 2017 Jan 9. PMID: 28067164


Proliferation of hepatic and colon cancer cells, HepG2 and Caco-2, were shown to be sensitive to olive leaf extract.

Olea europaea L. has been widely used as an advantageous rich source of bioactive compounds of high economic value leading to its use in pharmaceutical, cosmetic, and agriculture industries. Ethanolic extracts of olive fruits from three different cultivars (OFE) were studied for their phytochemical contents and were investigated for antioxidant activities and anticancer potential. Major polyphenols detected in these extracts were tyrosol, hydroxytyrosol, oleuropein, rutin, quercetin and glucoside forms of luteolin and apigenin. All these compounds have shown to significantly contribute to the antioxidant activity of OFE, which was evaluated by DPPH and ABTS assays. Proliferation of hepatic and colon cancer cells, HepG2 and Caco-2, were shown to be sensitive to OFE with IC50 less than 1.6mg/ml for all tested extracts. Moreover, flow cytometry analysis showed that OFE induced cell cycle arrest in the S-phase within both HepG2 and Caco-2 cells. This has triggered a cell death mechanism as shown by DNA fragmentation, expression of p53 and phosphorylation level of Akt and Erk proteins. Interestingly, these extracts could be further used as a potential source of natural compounds with both antioxidant and anticancer effects.

Biomed Pharmacother. 2017 Mar 27 ;90:179-186. Epub 2017 Mar 27. PMID: 28360012


New insights into therapeutic activity and anticancer properties of curcumin.

Natural compounds obtained from plants are capable of garnering considerable attention from the scientific community, primarily due to their ability to check and prevent the onset and progress of cancer. These natural compounds are primarily used due to their nontoxic nature and the fewer side effects they cause compared to chemotherapeutic drugs. Furthermore, such natural products perform even better when given as an adjuvant along with traditional chemotherapeutic drugs, thereby enhancing the potential of chemotherapeutics and simultaneously reducing their undesired side effects. Curcumin, a naturally occurring polyphenol compound found in the plant Curcuma longa, is used as an Indian spice. It regulates not only the various pathways of the immune system, cell cycle checkpoints, apoptosis, and antioxidant response but also numerous intracellular targets, including pathways and protein molecules controlling tumor progression. Many recent studies conducted by major research groups around the globe suggest the use of curcumin as a chemopreventive adjuvant molecule to maximize and minimize the desired effects and side effects of chemotherapeutic drugs. However, low bioavailability of a curcumin molecule is the primary challenge encountered in adjuvant therapy. This review explores different therapeutic interactions of curcumin along with its targeted pathways and molecules that are involved in the regulation of onset and progression of different types of cancers, cancer treatment, and the strategies to overcome bioavailability issues and new targets of curcumin in the ever-growing field of cancer.

J Exp Pharmacol. 2017 ;9:31-45. Epub 2017 Mar 31. PMID: 28435333


The results support a role for dietary polyphenols in protecting against benzo[a]pyrene induced carcinogenesis.

While dietary polyphenols are widely recognized for cancer-preventing characteristics, the relative effectiveness and mechanisms of action of different polyphenols is not clear. In the present study, we investigated the protective effects of six different polyphenols against benzo[a]pyrene (B[a]P)-induced oxidative stress and neoplastic transformation in the Bhas 42 cell carcinogenesis assay. All of the polyphenols completely prevented the increased intracellular ROS generation by B[a]P at 12 h, and most inhibited after 3 days. B[a]P increased mitochondrial superoxide generation at 12 h, which was inhibited by the anthocyanins and berberine. B[a]P increasedexpression of genes related to oxidative stress and inflammation (Nrf2, UCP2, and TNF-α) after 24 h. Polyphenols strongly inhibited the increase in TNF-α and also several polyphenols inhibited the increase in UCP2. At 21 days after 72 h treatment, B[a]P produced a large increase in the number of neoplastic colonies. This transformation was inhibited by most polyphenols, and strongly by resveratrol. In summary, all tested polyphenols were able to inhibit B[a]P-induced increases in markers of oxidative stress and inflammation, and to inhibit cellular transformation, with resveratrol being notable for the strongest preventive effect on cell transformation. The results support a role for dietary polyphenols in protecting against B[a]P-induced carcinogenesis.

Food Chem Toxicol. 2017 May 19. Epub 2017 May 19. PMID: 28533128


Rosmarinus officinalis L. extracts markedly inhibited the proliferation of two tested cancer cells.

Rosmarinus officinalis L., a medicinal herb from the labiates family, has been reported to have potential benefit in the treatment and prevention of several diseases. In particular its phenolics have demonstrated protective effects on various types of cancer through several mechanisms. The present study aimed to determine the effects of rosemary phenolic extracts on human cell functions, with particular regard to their anti-proliferative properties in three cell types U937, CaCo-2 and the peripheral blood mononuclear cells (PBMCs). The radical scavenging and Ferric reducing abilities of the extracts have been assessed as well as their cyto-toxicity and effects on cell cycle distribution and apoptosis. About 13 compounds were identified with dominance of rosmarinic acid in the methanolic extract and phenolic diterpens in the ethyl acetate fraction (Carnosol, Carnosic acid and methyl Carnosate). The total polyphenolic content was important in the first extract with 2.589± 0.005 g/100 g in gallic acid equivalent compared to 0.763 ± 0.005 g/100 g. The methanolic fraction displayed higher antioxidant activity (DPPHIC50: 0.510 mg/mL and FRAP: 1.714 ± 0.068 mmol Fe(2+)/g) while ethyl acetate showed pronounced antiproliferative effects (IC50: 14.85 ± 0.20µg/mL and 14.95 ± 2.32 µg/mL respectively for U937 and CaCo-2 cells). The anti-proliferative effect was associated with a cell cycle arrest in S phase for U937 (62% of the population at 5 µg/mL) with a concomitant decrease in G1 and G2/M phases. Tested extracts displayed in addition early apoptotic effectsin U937 and late apoptosis in CaCo-2 cells. The obtained data indicate that the identified phenolics are at least partially responsible for the observed cytotoxicity.

Iran J Pharm Res. 2017 ;16(1):315-327. PMID: 28496485


The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention.

Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein), and therapeutic perspectives with an emphasis on clinical trial results to date.

Molecules. 2017 Jun 18 ;22(6). Epub 2017 Jun 18. PMID: 28629161


Preliminary results indicate a selective cytotoxicity of an aqueous extract of Pterocarpus marsupium towards the cancer cells.

Pterocarpus marsupium is a well-known plant due to its healing properties, in particular, the use of its aqueous extract is able to reduce blood sugar levels and blood triglyceride concentrations. Although this plant has already been widely studied, a complete characterization of its aqueous extract has not been reported. The present study deals with the characterization of the aqueous extract of P. marsupium in order to obtain a full fingerprint of the volatile and nonvolatile constituents. The volatile constituents were identified by CG-MS, whereas the nonvolatile fraction was characterized by UHPLC-MS/MS using a nontarget approach. Several compounds were identified, in particular, polyphenolic species belonging to the class of proanthocyanidins. Cytotoxicity tests were carried out on four different cancer cell lines and three different non-tumoral cell lines. Preliminary results indicate a selective cytotoxicity of the aqueous extract towards the cancer cells. The potential cytotoxicity due to the presence of metals in the aqueous extract was ruled out by testing an aqueous mixture of the metals at the same concentration found in the P. marsupium extract.

Planta Med. 2016 Sep ;82(14):1295-301. Epub 2016 Apr 28. PMID: 27124243


These results may suggest that Annona muricata leaf extract had anticancer properties by enhancing caspase-3 activity

Annona muricata, commonly known as soursop, contains annonacin, acetogenin, and polyphenol which are known to have chemopreventive effects on cancer. In this study, we tend to evaluate the apoptosis-inducing effect of soursop (Annona muricata) leaf extract on the colorectal cancer cell line COLO-205 through the activities of caspase-3 which is a marker of cell apoptosis. Cell cultures were incubated with soursop leaf with a concentration of 10 μg/ml and then compared with those of the incubated positive control leucovorin 10 μg/ml and placebo as a negative control. The apoptotic activity of caspase-3 was measured with ELISA. After the administration of each treatment in the colorectal cancer cell line COLO-205, the expression of caspase-3 activity was 1422 ng/ml after incubation with the extract of Annona muricata leaves, 1373 ng/ml after the administration of leucovorin, and 1297 ng/ml in the one with placebo. Annona muricata leaf extract elevated caspase-3 by 1.09 times compared to that of the pure cell line. Annona muricata leaf extract had a higher value of caspase-3 activity than leucovorin and placebo in the COLO-205 colorectal cancer cell line. These results may suggest that Annona muricata leaf extract had anticancer properties by enhancing caspase-3 activity which is a proapoptotic marker.

Gastroenterol Res Pract. 2017 ;2017:4357165. Epub 2017 Apr 9. PMID: 28487731


Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings.

Clin Sci (Lond). 2017 Aug 1 ;131(15):1781-1799. Epub 2017 Jul 5. PMID: 28679846


This article summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of oleuropein.

Cancer cells exhibit enhanced proliferation rate and a resistance to apoptosis. Epidemiological studies suggest that olive oil intake is associated with a reduced risk of cancer. Olive oil, olives, and olive leaves contain many polyphenols, including oleuropein. Recently, several studies have demonstrated that oleuropein inhibits proliferation and induces apoptosis in different cancer cell lines. In addition, anticancer effects of oleuropein have been seen in animal studies. These effects are associated with oleuropein's ability to modulate gene expression and activity of a variety of different signaling proteins that play a role in proliferation and apoptosis. This article summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of oleuropein and its effects on key signaling molecules.© 2017 BioFactors, 2017.

Biofactors. 2017 Jun 14. Epub 2017 Jun 14. PMID: 28612982


Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics

Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD(+)-dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels.

Food Chem Toxicol. 2017 Jul 8. Epub 2017 Jul 8. PMID: 28698153


Honokiol induces apoptosis, G1 arrest, and autophagy in KRAS mutant lung cancer cells.

Aberrant signaling transduction induced by mutant KRAS proteins occurs in 20∼30% of non-small cell lung cancer (NSCLC), however, a direct and effective pharmacological inhibitor targeting KRAS has not yet reached the clinic to date. Honokiol, a small molecular polyphenol natural biophenolic compound derived from the bark of magnolia trees, exerts anticancer activity, however, its mechanism remains unknown. In this study, we sought to investigate the in vitro effects of honokiol on NSCLC cell lines harboring KRAS mutations. Honokiol was shown to induce G1 arrest and apoptosis to inhibit the growth of KRAS mutant lung cancer cells, which was weakened by an autophagy inhibitor 3-methyladenine (3-MA), suggesting a pro-apoptotic role of honokiol-induced autophagy that was dependent on AMPK-mTOR signaling pathway. In addition, we also discovered that Sirt3 was significantly up-regulated in honokiol treated KRAS mutant lung cancer cells, leading to destabilization ofits target gene Hif-1α, which indicated that the anticancer property of honokiol maybe regulated via a novel mechanism associated with the Sirt3/Hif-1α. Taken together, these results broaden our understanding of the mechanisms on honokiol effects in lung cancer, and reinforce the possibility of its potential anticancer benefit as a popular Chinese herbal medicine (CHM).

Front Pharmacol. 2017 ;8:199. Epub 2017 Apr 11. PMID: 28443025


Hazelnut shell extract has antioxidant effects, and cytotoxic activity in human cancer cell lines.

Hazelnut shells, a by-product of the kernel industry processing, are reported to contain high amount of polyphenols. However, studies on the chemical composition and potential effects on human health are lacking. A methanol hazelnut shells extract was prepared and dried. Our investigation allowed the isolation and characterization of different classes of phenolic compounds, including neolignans, and a diarylheptanoid, which contribute to a high total polyphenol content (193.8± 3.6 mg of gallic acid equivalents (GAE)/g of extract). Neolignans, lawsonicin and cedrusin, a cyclic diarylheptanoid, carpinontriol B, and two phenol derivatives, C-veratroylglycol, and β-hydroxypropiovanillone, were the main components of the extract (0.71%-2.93%, w/w). The biological assays suggested that the extract could be useful as a functional ingredient in food technology and pharmaceutical industry showing an in vitro scavenging activity against the radical 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) (EC50 = 31.7 μg/mL with respect to α-tocopherol EC50 = 10.1 μg/mL), and an inhibitory effect on the growth of human cancer cell lines A375, SK-Mel-28 and HeLa (IC50 = 584, 459, and 526 μg/mL, respectively). The expression of cleaved forms of caspase-3 and poly(ADP-ribose) polymerase-1 (PARP-1) suggested that the extract induced apoptosis through caspase-3 activation in bothhuman malignant melanoma (SK-Mel-28) and human cervical cancer (HeLa) cell lines. The cytotoxic activity relies on the presence of the neolignans (balanophonin), and phenol derivatives (gallic acid), showing a pro-apoptotic effect on the tested cell lines, and the neolignan, cedrusin, with a cytotoxic effect on A375 and HeLa cells.

Int J Mol Sci. 2017 Feb 13 ;18(2). Epub 2017 Feb 13. PMID: 28208804


Targeting STAT3 by polyphenols brings an opportunity to melanoma therapy.

Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy.© 2016 BioFactors, 43(3):347-370, 2017.

Biofactors. 2017 May 6 ;43(3):347-370. Epub 2016 Nov 29. PMID: 27896891


This review explores the potential of quercetin as an anti-melanoma agent.

Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase - a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible a target for polyphenol-based therapies. For example, quercetin (3,3',4',5,7-pentahydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables, and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anticancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review, we explore the potential of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a"four-focus area strategy"to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to (i) modulate cellular bioreduction potential and associated signaling cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, and (iv) develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

Front Nutr. 2016 ;3:48. Epub 2016 Oct 31. PMID: 27843913


In vitro and in vivo studies have demonstrated that curcumin and its analogues can be used as novel therapeutic agents in melanoma.

Melanoma remains among the most lethal cancers and, in spite of great attempts that have been made to increase the life span of patients with metastatic disease, durable and complete remissions are rare. Plants and plant extracts have long been used to treat a variety of human conditions; however, in many cases, effective doses of herbal remedies are associated with serious adverse effects. Curcumin is a natural polyphenol that shows a variety of pharmacological activities including anti-cancer effects, and only minimal adverse effects have been reported for this phytochemical. The anti-cancer effects of curcumin are the result of its anti-angiogenic, pro-apoptotic and immunomodulatory properties. At the molecular and cellular level, curcumin can blunt epithelial-to-mesenchymal transition and affect many targets that are involved in melanoma initiation and progression (e.g., BCl2, MAPKS, p21 and some microRNAs). However, curcumin has a low oral bioavailability that may limit its maximal benefits. The emergence of tailored formulations of curcumin and new delivery systems such as nanoparticles, liposomes, micelles and phospholipid complexes has led to the enhancement of curcumin bioavailability. Although in vitro and in vivo studies have demonstrated that curcumin and its analogues can be used as novel therapeutic agents in melanoma, curcumin has not yet been tested against melanoma in clinical practice. In this review, we summarized reported anti-melanoma effects of curcumin as well as studies on new curcumin formulations and delivery systems that show increased bioavailability. Such tailored delivery systems could pave the way for enhancement of the anti-melanoma effects of curcumin.

Int J Cancer. 2016 Oct 15 ;139(8):1683-95. Epub 2016 Jul 4. PMID: 27280688


Punicalagin exerts anti-proliferative activity in prostate cancer cells via induction of apoptosis and anti-angiogenic effects.

Prostate cancer (PCa) is an international health problem and search for its effective treatment is in progress. Punicalagin (PN), polyphenol from pomegranate fruit, is known to exhibit potent anticancer activity in lung, breast and cervical cells. However, there is paucity of information on its effect in PCa. This study evaluated anti-proliferative effects of PN and its effects on extrinsic pathway of apoptosis in PCa cells, and angiogenesis in chicken chorioallantoic membrane (CAM). Antioxidant activities of PN were determined by 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging and inhibition of lipid peroxidation (LPO) methods. PCa (PC-3 and LNCaP) and normal prostate (BPH-1) cells were cultured and treated with PN (10, 50 and 100 μM). Cytotoxicity and viability effects of PN were determined by lactate dehydrogenase (LDH) and XTT assays, respectively. Antiangiogenic effects were measured using CAM assay, while apoptosis was assessed by DNA fragmentation, enrichment factor by Cell Death Detection ELISA kit and expressions of caspases-3 and -8. Results showed that PN (10-200 μM) significantly scavenged DPPH and inhibited LPO in a concentration-dependent manner. Furthermore, PN (10-100 μM) concentration-dependently inhibited viability in PC-3 and LNCaP, while viability in BPH-1 was insignificantly affected. PN had low toxicity on cells in vitro at concentrations tested. Also, PN (100 μM) increased enrichment factor in PC-3 (2.34 ± 0.05) and LNCaP (2.31 ± 0.26) relative to control (1.00 ± 0.00). In addition, PN (50 μM) decreased the network of vessels in CAM, suggesting its anti-angiogenic effect.Moreso, PN increased the expressions of caspases-3 and -8 in PC-3. Overall, PN exerts anti-proliferative activity in PCa cells via induction of apoptosis and anti-angiogenic effect.

Chem Biol Interact. 2017 Jul 11. Epub 2017 Jul 11. PMID: 28709945


All the polyphenols exhibited a significant cytotoxicity against melanoma cells.

The Bcl-2 family includes 26 proteins involved in apoptosis. Cancer cells can develop the ability to avoid apoptosis through the upregulation and/or down regulation of such proteins Bax, Bcl-xL or Mcl-1, especially during chemoresistance progress. These proteins engaged in a network of dynamic interactions that control apoptosis triggering have become attractive therapeutic targets in cancers including melanoma. Among them, the Bax/Bcl-xL interaction appears critical in maintaining mitochondria integrity. Therefore a series of mixed polyphenol-heterocyclic molecules, were rationally designed by molecular docking as Bax/Bcl-xL inhibitors. It has been screened against B16-F10 melanoma cancer cells for a preliminary investigation of their cytotoxicity. All these compounds exhibited a significant cytotoxicity against these cancer cells, in the 0.3-6 .M range. A pyrazole-type molecule, which had a submicromolar IC50 value with an excellent selectivity index (14), is the most promising derivative for further development.

Med Chem. 2016 ;12(5):419-25. PMID: 26825069


Polyphenols from green tea inhibit the growth of melanoma cells.

Melanoma is the leading cause of skin cancer-related deaths. We have examined the effect of green tea polyphenols (GTPs), a natural mixture of epicatechin monomers, on melanoma cancer cell growth and the molecular mechanism underlying these effects using different human melanoma cell lines as an in vitro model. Treatment of melanoma cell lines (A375, Hs294t, SK-Mel28 and SK-Mel119) with GTPs significantly inhibited the cell viability as well as colony formation ability of melanoma cells in a dose-dependent manner. These effects of GTPs were associated with a significant inhibition of histone deacetylase (HDAC) activity, reduction in the levels of class I HDAC proteins, enhancement of histone acetyltransferase (HAT) activity and induction of DNA damage, as detected by Comet assay, in melanoma cells. GTPs-induced decrease in the levels of class I HDAC proteins is mediated through proteasomal degradation. Valproic acid, an inhibitor of HDACs, exhibited a similar pattern of reduced viability and induction of death of melanoma cells. Treatment of A375 and Hs294t cells with GTPs resulted in a decrease in the levels of cyclins and cyclin dependent kinases of G1 phase of cell cycle whereas upregulated the levels of tumor suppressor proteins (Cip1/WAF1/p21, p16 and p53).

Genes Cancer. 2015 Jan ;6(1-2):49-61. PMID: 25821561


Curcumin intake affects miRNA signature in murine melanoma.

Melanoma is the most aggressive form of skin cancer with estimated 48,000 deaths per year worldwide. The polyphenol curcumin derived from the plant Curcuma longa is well known for its anti-inflammatory and anti-cancerogenic properties. Accordingly, dietary intake of this compound may be suitable for melanoma prevention. However, how this compound affects basic cellular mechanisms in developing melanoma still remains elusive. Therefore, the aim of this study was to investigate for the first time the impact of oral curcumin administration on the miRNA signature of engrafting melanoma. For this purpose, the effects of a 4% curcumin diet were tested on melanoma, which were established by injection of murine B78H1 cells in the flank of C57BL/6 mice. Curcumin diet or standard chow (control) was administered two weeks prior to injection of tumor cells until termination of the experiment. High throughput chip-based array analysis was deployed to detect alterations in the miRNA signature of the tumors. Curcumin treatment significantly reduced the growth of the flank tumors. Furthermore the miRNA expression signature in tumors was substantially altered by curcumin intake with mmu-miR-205-5p over 100 times higher expressed when compared to controls. The expression levels of identified key miRNAs in the tumor samples were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). A comparable expression pattern of these miRNAs was also detected in other curcumin-treated melanoma cell lines under in vitro conditions. Putative targets of curcumin-induced up-regulated miRNAs were enriched in 'o-glycan biosynthesis', 'endoplasmatic reticulum protein processing' and different cancer-related pathways. Western Blot analyses revealed that of these targets anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were significantly down-regulated in curcumin-treated tumors. These findings demonstrate a profound alteration of the miRNA expression signature in engrafting curcumin-treated melanoma with mmu-miR-205-5p being up-regulated most significantly.

PLoS One. 2013 ;8(12):e81122. Epub 2013 Dec 12. PMID: 24349037


This data indicate that lysosomal membrane permeabilization is the main cell death pathway triggered by pterostilbene.

The phenolic phytoalexin resveratrol is well known for its health-promoting and anticancer properties. Its potential benefits are, however, limited due to its low bioavailability. Pterostilbene, a natural dimethoxylated analog of resveratrol, presents higher anticancer activity than resveratrol. The mechanisms by which this polyphenol acts against cancer cells are, however, unclear. Here, we show that pterostilbene effectively inhibits cancer cell growth and stimulates apoptosis and autophagosome accumulation in cancer cells of various origins. However, these mechanisms are not determinant in cell demise. Pterostilbene promotes cancer cell death via a mechanism involving lysosomal membrane permeabilization. Different grades of susceptibility were observed among the different cancer cells depending on their lysosomal heat shock protein 70 (HSP70) content, a known stabilizer of lysosomal membranes. A375 melanoma and A549 lung cancer cells with low levels of HSP70 showed high susceptibility to pterostilbene, whereas HT29 colon and MCF7 breast cancer cells with higher levels of HSP70 were more resistant. Inhibition of HSP70 expression increased susceptibility of HT29 colon and MCF7 breast cancer cells to pterostilbene. Our data indicate that lysosomal membrane permeabilization is the main cell death pathway triggered by pterostilbene.

PLoS One. 2012 ;7(9):e44524. Epub 2012 Sep 5. PMID: 22957077


The use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer.

Growing evidence indicates that deregulation of the epigenetic machinery comprising the microRNA (miRNA) network is a critical factor in the progression of various diseases, including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health-beneficial properties, such as anti-inflammatory, cardioprotective, antioxidative, and anticancer properties. Available experimental data have suggested that dietary polyphenols may be effective miRNA-modulating chemopreventive and therapeutic agents. Moreover, noninvasive detection of changes in miRNA expression in liquid biopsies opens enormous possibilities for their clinical utilization as novel prognostic and predictive biomarkers. In our published studies, we identified resveratrol-regulated miRNA profiles in prostate cancer. Resveratrol downregulated the phosphatase and tensin homolog (PTEN)-targeting members of the oncogenic miR-17 family of miRNAs, which are overexpressed in prostate cancer. We have functionally validated the miRNA-mediated ability of resveratrol and its potent analog pterostilbene to rescue the tumor suppressor activity of PTEN in vitro and in vivo. Taken together, our findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.

Ann N Y Acad Sci. 2017 Jun 29. Epub 2017 Jun 29. PMID: 28662290


Fisetin could be a useful chemotherapeutic agent for the management of prostate and other cancers.

Epidemiologic and case control population based studies over the past few decades have identified diet as an important determinant of cancer risk. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds has been fisetin (3,7,3',4'-tetrahydroxyflavone), a flavonol and a member of the flavonoid polyphenols that also include quercetin, myricetin and kaempferol. Fisetin is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. We evaluated the effects of fisetin against melanoma and cancers of the prostate, pancreas and the lungs. Using prostate and lung adenocarcinoma cells, we demonstrated that fisetin acts as a dual inhibitor of the PI3K/Akt and the mTOR pathways. This is a significant finding considering the fact that mTOR is phosphorylated and its activation is more frequent in tumors with overexpression of PI3K/Akt. Dual inhibitors of PI3K/Akt and mTOR signaling have been suggested as valuable agents for treating such cancers. Here, we summarize our findings on the dietary flavonoid fisetin and its effects on cancer with particular focus on prostate cancer. Our observations and findings from other laboratories suggest that fisetin could be a useful chemotherapeutic agent that could be used either alone or as an adjuvant with conventional chemotherapeutic drugs for the management of prostate and other cancers.

Biochem Pharmacol. 2012 Nov 15 ;84(10):1277-81. Epub 2012 Jul 25. PMID: 22842629


Resveratrol prevents endothelial cells injury in high-dose interleukin-2 therapy against melanoma.

Immunotherapy with high-dose interleukin-2 (HDIL-2) is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS). In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1(+)CD11b(+) myeloid-derived suppressor cells (MDSC) and FoxP3(+)CD4(+) regulatory T cells (Treg). We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory T cell in the development of VLS.

PLoS One. 2012 ;7(4):e35650. Epub 2012 Apr 20. PMID: 22532866


Anthocyanidins inhibit epithelial-mesenchymal transition in glioblastoma cells.

Epidemiological studies have convincingly demonstrated that diets rich in fruits and vegetables play an important role in preventing cancer due to their polyphenol content. Among polyphenols, the anthocyanidins are known to possess anti-inflammatory, cardioprotective, anti-angiogenic, and anti-carcinogenic properties. Despite the well-known role of transforming growth factor-β (TGF-β) in high grade gliomas, the impact of anthocyanidins on TGF-β-induced epithelial-mesenchymal transition (EMT), a process that allows benign tumor cells to infiltrate surrounding tissues, remains poorly understood. The objective of this study is to investigate the impact of anthocyanidinssuch as cyanidin (Cy), delphinidin (Dp), malvidin (Mv), pelargonidin (Pg), and petunidin (Pt) on TGF-β-induced EMT and to determine the mechanism(s) underlying such action. Human U-87 glioblastoma (U-87 MG) cells were treated with anthocyanidins prior to, along with or following the addition of TGF-β. We found that anthocyanidins differently affected TGF-β-induced EMT, depending on the treatment conditions. Dp was the most potent EMT inhibitor through its inhibitory effect on the TGF-β Smad and non-Smad signaling pathways. These effects altered expression of the EMT mesenchymal markers fibronectin and Snail, as well as markedly reducing U-87 MG cell migration. Our study highlights a new action of anthocyanidins against EMT that supports their beneficial health and chemopreventive effects in dietary-based strategies against cancer. © 2016 Wiley Periodicals, Inc.

Mol Carcinog. 2017 Mar ;56(3):1088-1099. Epub 2016 Oct 4. PMID: 27649384


Curcumin reduced the migration and invasive ability of T24 and 5637 bladder cancer cells.

Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression ofβ-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymaltransition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.

Tumour Biol. 2017 Jul ;39(7):1010428317702548. PMID: 28705118


Annurca apple polyphenol extract strongly inhibits the proliferation of MCF-7 cells by inducing G2/M cell cycle arrest and apoptosis.

Among nutraceuticals, polyphenols represent the most intriguing and studied class of compounds that can be therapeutics for a large spectrum of the most common diseases, including cancer. Although polyphenols are well known as potent antioxidants, a pro-oxidant effect has been associated with a pro-apoptotic function of these compounds in various types of tumor cells. Annurca apple, a southern Italian variety, is characterized by an extremely high content of polyphenols and displays a stronger antioxidant activity compared with other varieties. In the present study we explored the antiproliferative effect of Annurca apple polyphenol extract (APE) in human breast cancer MCF-7 cells and we investigated the underlying mechanisms. Results showed that at 500 µM catechin equivalent (EqC) APE acts as a pro-oxidant increasing thiobarbituric acid-reactive species cell content of approximately 6-fold more than the untreated cells. We found that APE strongly inhibits the proliferation of MCF-7 cells by inducing G2/M cell cycle arrest and apoptosis. Immunoblot analysis demonstrated that APE treatment increases the levels of p53 and p21, downregulates the expression of the cell cycle regulatory protein cyclin D1, and inhibits ERK1/2 phosphorylation. Moreover, APE treatment caused a marked increase of pro-apoptotic Bax/Bcl-2 ratio paralleled by caspase-9, -6, -7, and poly(ADP ribose) polymerase cleavage. Altogether our data indicate that APE, at elevated concentrations, acts as a potent pro-oxidant and antiproliferative agent able to downregulate ERK1/2 pathway leading to cell cycle inhibition and apoptosis and provides a rationale for its potential use in the development of novel therapeutics towards breast cancer.

Int J Oncol. 2017 Sep ;51(3):939-948. Epub 2017 Jul 31. PMID: 28766690


There is good epidemiological evidence of a reduction in CRC risk from case-control and cohort studies assessing polyphenol intake.

Current focus in colorectal cancer (CRC) management is on reducing overall mortality by increasing the number of early-stage cancers diagnosed and treated with curative intent. Despite the success of screening programs in down-staging CRC, interval cancer rates are substantial and other strategies are desirable. Sporadic CRC is largely associated with lifestyle factors including diet. Polyphenols are phytochemicals ingested as part of a normal diet, which are abundant in plant foods including fruits/berries and vegetables. These may exert their anti-carcinogenic effects via the modulation of inflammatory pathways. Key signal transduction pathways are fundamental to the association of inflammation and disease progression including those mediated by NF-κB and STAT, PI3K and COX. Our aim was to examine the evidence for the effect of dietary polyphenols intake on tumor and host inflammatory responses to determine if polyphenols may be effective as part of a dietary intervention. There is good epidemiological evidence of a reduction in CRC risk fromcase-control and cohort studies assessing polyphenol intake. It would be premature to suggest a major public health intervention to promote their consumption; however, dietary change is safe and feasible, emphasizing the need for further investigation of polyphenols and CRC risk.

Crit Rev Food Sci Nutr. 2017 Jul 24 ;57(11):2310-2320. PMID: 26066365


Silibinin suppressed chemoresistance and bladder cancer malignancy in an NF-κB-dependent and independent manner.

Because bladder cancer (BCa) is the 9th most common malignant tumor and 13th leading cause of death due to cancer, therapeutic approaches have attracted a great deal of attention from both clinicians and BCa patients. Although the development of surgery and targeted drugs has brought new challenges for the traditional concept of BCa therapy, various types of chemotherapy remain the final treatment method for many BCa patients. However, chemoresistance inevitably appears, leading to the failure of chemotherapy. Silibinin, a polyphenolic flavonoid component isolated from the fruits or seeds of milk thistle, has been reported to play important roles in inhibiting tumor chemoresistance in breast cancer and head and neck squamous cell carcinomas. Our previous study indicated that silibinin inhibited BCa progression in some mechanisms but with no conclusion of chemoresistance inhibition. Therefore, in the present study, we dissected the role of silibinin in BCa progression and chemoresistance. Our results revealed that in BCa, chemodrug-induced chemoresistance was reversed in the presence of silibinin. Further mechanistic study indicated that silibinin suppressed chemoresistance and BCa malignancy in an NF-κB-dependent and -independent manner. In addition, all of the inhibitory effects were dose‑dependent. Thus, our results provide a potential use for silibinin in BCa therapeutics.

Int J Oncol. 2017 Aug 2. Epub 2017 Aug 2. PMID: 28791405


Phytochemicals may serve as novel therapeutic agents for breast cancer treatment.

Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development.

Semin Cancer Biol. 2016 Oct ;40-41:192-208. Epub 2016 Sep 5. PMID: 27609747


These results indicate that methoxylated stilbenes are efficient inhibitors of glioma cell proliferation and apoptosis inducers.

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a potent chemopreventive and potentially cancer therapeutic agent. Since rapid metabolism limits resveratrol bioavailability, derivatives less prone to metabolic transformation are being sought and tested. We evaluated the effect of resveratrol, and its analogs (pterostilbene and 3,5,4'-trimethoxystilbene) along with tannic acid, on cell cycle and apoptosis in rat C6 and human T98G glioma cells. At concentration ranges both lower and higher than IC50 calculated based on MTT assay, all these polyphenols affected the cell cycle distribution. However, resveratrol and pterostilbene increased the percentage of the cells in S phase, while trimethoxystilbene (TMS) caused a massive accumulation of cells at the G2/M phase of the cell cycle. Tannic acid had no effect on cell cycle distribution in C6 cells, but increased the number of dead cells in both glioma cell lines. The ability to induce apoptosis by tannic acid and stilbenes was confirmed by phosphatidylserine externalization, the loss of mitochondrial membrane potential and the level of cleaved caspase-3. The apoptosis rate was most significantly increased by TMS and this was related to p53 induction. These results indicate that methoxylated stilbenes are efficient inhibitors of glioma cell proliferation and apoptosis inducers and might be considered adjuvants in glioma therapy.

Toxicol In Vitro. 2017 Sep ;43:69-75. Epub 2017 Jun 6. PMID: 28595835


Xanthohumol treatment can induce paraptosis of leukemia cells through activation of p38 MAPK signalling.

Xanthohumol as a natural polyphenol demonstrates an anticancer activity, but its underlying mechanism remains unclear. In this study, we showed that xanthohumol (XN) induces paraptosis of leukemia cells. The paraptosis is one cell death which is characterized by dilation of the endoplasmic reticulum and/or mitochondria. The results demonstrated that XN treatment significantly inhibited cell proliferation and triggered extensive cytoplasmic vacuolation of HL-60 leukemia cells, but it did not cause the cleavage of caspase-3 protein or apoptosis. In contrast, XN treatment resulted in LC3-II accumulation through blocking of autophagosome maturation. Interestingly, the induction of cytoplasmic vacuolization by XN is not associated with autophagy modulated by XN, therefore, XN-induced cell death of HL-60 leukemia cells is not the classical apoptotic cell death. Intriguingly, XN treatment triggered the dilatation of endoplasma reticulum (ER) and induced ER stress by upregulating C/EBP homologous protein and unfolded protein response regulator Grp78/Bip. Furthermore, XN treatment triggered p38 mitogen activated protein kinase and its specific inhibitor inhibited the paraptosis of HL-60 leukemia cells by XN. In conclusion, we for the first time demonstrated that XN treatment can induce paraptosis of leukemia cells through activation of p38 MAPK signaling.

Oncotarget. 2017 May 9 ;8(19):31297-31304. PMID: 28415750


Chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

Mol Cell Biochem. 2017 Sep 5. Epub 2017 Sep 5. PMID: 28875417


There exists strong evidence from animal models suggesting pomegranate juice can be used to effectively treat IBD, and chronic inflammatory diseases.

Fruits rich in polyphenols, such as pomegranates, have been shown to have health benefits relating to their antioxidant and anti-inflammatory properties. Using data obtained from PubMed and Scopus, this article provides a brief overview of the therapeutic effects of pomegranate on chronic inflammatory diseases (CID) such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), metabolic and cardiovascular disorders, and other inflammatory-associated conditions, with an emphasis on fruit-derived juices. Most studies regarding the effects of pomegranate juice have focused on its ability to treat prostate cancer, diabetes, and atherosclerosis. However, pomegranate juice has shown therapeutic potential for many other illnesses. For instance, a small number of human clinical trials have highlighted the positive effects of pomegranate juice and extract consumption on cardiovascular health. The beneficial effects of pomegranate components have also been observed in animal models for respiratory diseases, RA, neurodegenerative disease, and hyperlipidaemia. Furthermore, there exists strong evidence from rodent models suggesting that pomegranate juice can be used to effectively treat IBD, and as an anti-inflammatory agent to treat CID. The effects of pomegranate intake should be further investigated by conducting larger and more well-defined human trials.

Nutrients. 2017 Aug 30 ;9(9). Epub 2017 Aug 30. PMID: 28867799


Health benefits of manuka honey as an essential constituent for tissue regeneration.

Honey is known for its therapeutic properties from ancient civilizations but only since last few decades its mechanism has been studied on how it causes epithelial regeneration leading to wound and ulcer healing.. In the present review the health perspectives of honey, its chemical composition with special reference to flavonoids, polyphenol composition and other bioactive trace compounds used in tissue regeneration have been highlighted. Honey can inhibit carcinogenesis by moderating with molecular processes of initiation, advancement and progression stage of cancer cells, therefore it is considered a promising anti-cancer agent. Several, well-intentioned characteristics have drawn the attention of researchers to check copious endowed-biological activities of Manuka honey, including antioxidant, antimicrobial and anti-proliferative capacities against cancer cells. Thus, scientists are trying to use Manuka honey in the area of biomedical and tissue engineering to design a template for regeneration. Naturally derived antibacterial agents, like Manuka honey, contain mixture of compounds, which can influence antibacterial potency. The non-peroxide bacteriostatic properties of Manuka honey have been formerly associated to the presence of methylglyoxal (MGO). The assimilation of MGO as a functional antibacterial additive during designing a tissue template production would explore its properties as a potential agent for manufacturing tissue regeneration template.The role of glyoxal (GO) and MGO in the bacterial growth inhibition, and in addition to immunomodulatory role, it also enhances wound healing and tissue regeneration. Researchers should step forward to explore the biomedical application, particularly integration into tissue regeneration templates. Therefore, further studies are fully needed to provide detailed information on active components of Manuka honey and their potential therapeutic efficacy in numerous models of human diseases.

Curr Drug Metab. 2017 Sep 11. Epub 2017 Sep 11. PMID: 28901255


Anticancer effects of seaweed compound fucoxanthin alone and in combination with 5-fluorouracil in colon cells.

Colorectal cancer therapy with 5-fluorouracil (5-Fu) frequently become ineffective due to resistance to this drug; and thus other effective compounds are essential for therapy. It is well-known marine brown seaweeds contain antioxidant compounds the carotenoid fucoxanthin (Fx) and polyphenolic compound phloroglucinol (Ph) which exerted diverse biological activities including antioxidant and anticancer. The aim of this study was to determine the anticancer activities of Fx or Ph alone as well as combination of each chemical with 5-Fu on two human colorectal cancer cell lines (HCT116 and HT29), with comparison to responses in a normal colon cell line (CCD-18Co). Effects of these compounds on cell viability, induction of DNA damage, and cell death were evaluated using MTT assay, comet assay, nuclear condensation assay, and Western blot. 5-Fu decreased cell viability in a concentration-dependent manner in HCT116 and HT29 cells but was not cytotoxic in CCD-18Co cells. 5-Fu induced DNA damage in HCT116 cells with induction of cell death, while no marked effects on DNA damage and cell death were observed in HT29 cells. Fx or Ph alone also reduced cell viability in both cancer cell lines but no apparent cytotoxic effect in CCD-18Co cells, except for Fx at 50 and 100µM. Diminished cell viability was accompanied by induction of DNA damage (by Fx) and induction of cell death (by Ph). In combination with 5-Fu, Fx at 10 µM (in HCT116 and HT29 cells), and Ph at 300 µM (in HT29 cells) enhanced the cytotoxic effect of 5-Fu; however, no marked cytotoxicity was notedin CCD-18Co cells. Since Fx and Ph alone reduced cancer cell line viability without an effect on normal cells and when in combination enhanced the cytotoxic effect of 5-Fu only in colon cancer cells, these compounds seem promising as anticancer agents.

J Toxicol Environ Health A. 2017 Aug 29:1-12. Epub 2017 Aug 29. PMID: 28850007


Genistein and tamoxifen can significantly inhibit growth of liver cancer cells and plays a significant role in apoptosis.

Introduction: The flavonoids comprise a diverse group of polyphenolic compounds with antioxidant activity that is present in edible plants like soybeans and soy products. In vivo studies have concentrated on the effects of flavonoids on cancer and genistein (GE), a soy-derived isoflavone, has been reported to reduce prostate, colon, hepatic and breast adenocarcinoma risk. Tamoxifen (TAM) is an important drug for cancer treatment worldwide, which can induce apoptosis in various cancers, including examples in the liver, breast and ovaries. The aim of the present study was to evaluate the effects of GE and TAM, alone and in combination, on proliferation and apoptosis in the human hepatocellular carcinoma (HCC) HepG2 cell line. Materials and Methods: HepG 2 cells were treated with GE, TAM and GE/TAM and then MTT and flow cytometry assays were conducted to determine effects on viability and apoptosis, respectively. Results: GE and TAM inhibited cell proliferation and induced apoptosis in the HepG 2 cell lines. Discussion: Our findings clearly indicated that GE and TAM may exert inhibitory and apoptotic effects in liver cancer cells. Conclusion: GE and TAM can significantly inhibit growth of HCC cells and play a significant role in apoptosis.

Asian Pac J Cancer Prev. 2017 09 27 ;18(9):2381-2385. Epub 2017 Sep 27. PMID: 28950682


This shows that genistein could be an important arsenal in the development of epigenetic based cancer therapy.

Introduction Epidemiological studies indicate that diet rich in fruits and vegetables are associated with decreased cancer risk thereby indicating that dietary polyphenols can be potential chemo-preventive agents. The reversible nature of epigenetic modifications makes them a favorable target for cancer prevention. Polyphenols have been shown to reverse aberrant epigenetic patterns by targeting the regulatory enzymes, DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). In vitro and in silico studies of DNMTs and HDACs were planned to examine genistein's role as a natural epigenetic modifier in human cervical cancer cells, HeLa.Methods Expression of the tumour suppressor genes (TSGs) [MGMT, RARβ, p21, E-cadherin, DAPK1] as well the methylation status of their promoters were examined alongwith the activity levels of DNMT and HDAC enzymes after treatment with genistein. Expression of DNMTs and HDACs was also studied. In-silico studies were performed to determine the interaction of genistein with DNMTs and HDACs.Results Genistein treatment significantly reduced the expression and enzymatic activity of both DNMTs and HDACs in a time dependent way. Molecular modeling data suggests that genistein can interact with various members of DNMT and HDAC families and supports genistein mediated inhibition of their activity. Time dependent exposure of genistein reversed the promoter region methylation of the TSGs and re-established their expression.Conclusions In this study, we find that genistein is able to reinstate the expression of the TSGs studied by inhibiting the action of DNMTs and HDACs. This shows that genistein could be an important arsenal in the development of epigenetic based cancer therapy.

Anticancer Agents Med Chem. 2017 Sep 18. Epub 2017 Sep 18. PMID: 28925878


These findings demonstrate that Pro-EGCG is a novel angiogenesis inhibitor for endometrial cancer.

Anti-angiogenesis effect of a prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) in malignant tumors is not well studied. Here, we investigated how the treatment with Pro-EGCG inhibited tumor angiogenesis in endometrial cancer. Tumor xenografts of human endometrial cancer were established and subjected to microarray analysis after Pro-EGCG treatment. First, we showed Pro-EGCG inhibited tumor angiogenesis in xenograft models through down-regulation of vascular endothelial growth factor A (VEGFA) and hypoxia inducible factor 1 alpha (HIF1α) in tumor cells and chemokine (C-X-C motif) ligand 12 (CXCL12) in host stroma by immunohistochemical staining. Next, we investigated how HIF1α/VEGFA was down-regulated and how the reduction of CXCL12 inhibited tumor angiogenesis. We found that VEGFA secretion from endometrial cancer cells was decreased by Pro-EGCG treatment through inhibiting PI3K/AKT/mTOR/HIF1α pathway. Furthermore, the down-regulation of CXCL12 in stromal cells by Pro-EGCG treatment restricted migration and differentiation of macrophages thereby inhibited infiltration of VEGFA-expressing tumor-associated macrophages (TAMs). Taken together, we demonstrated that treatment with Pro-EGCG not only decreases cancer cell-secreted VEGFA but also inhibits TAM-secreted VEGFA in endometrial cancer. These findings demonstrate that Pro-EGCG is a novel angiogenesis inhibitor for endometrial cancer.

Cancer Lett. 2017 Oct 9. Epub 2017 Oct 9. PMID: 29024813


Ellagic acid may be a potential drug adjuvant for improving cancer radiotherapy by increasing tumor toxicity.

Herbal polyphenols have gained increased significance because of the promises they hold in the prevention and treatment of cancer. There exists an enormous opportunity for the screening and valuation of natural dietary compounds in the development of an effective chemopreventive drug and radiosensitizer that may be of practical use for patients undergoing cancer therapy. This study describes the effect of the flavonoid ellagic acid (EA) on gamma-irradiated human breast cancer MCF-7 cells in vitro when administered alone or in combination with radiation. It was interesting to find the radioprotective effect of EA on NIH3T3, which is a normal cell line. Irradiation of breast tumor cells in the presence of EA (10 μM) to doses of 2 and 4-Gy gamma radiation produced a marked synergistic tumor cytotoxicity while it was found to aid recovery from the radiation damage to NIH3T3 cells. When cells were given a combined treatment of EA and radiation, the cell death increased to 21.7% and 20.7% in the 2 and 4-Gy-treated cells respectively, significantly (P

Nutr Cancer. 2017 Aug-Sep;69(6):904-910. Epub 2017 Jul 18. PMID: 28718725


Ellagic acid may provide benefit in reducing oxidative injury and cardiac dysfunction in cancer patients undergoing anthracycline treatment.

The Bcl-2 protein Bnip3 is crucial for provoking oxidative injury to mitochondria following anthracycline treatment or ischemia-reperfusion injury. Herein, we investigate the effects of the polyphenolic compound ellagic acid (EA) on Bnip3 mediated mitochondrial injury and necrotic cell death in cardiac myocytes. In contrast to vehicle treated cardiomyocytes, Bnip3 was highly enriched in mitochondrial fractions of cardiac myocytes treated with the anthracycline doxorubicin or in cells subjected to hypoxia (HPX). Mitochondrial associated Bnip3 was accompanied by mPTP opening and loss of∆Ψm. The dynamin related fission protein Drp-1 was phosphorylated (Drp1(616)) and coincided with excessive mitochondrial fragmentation, mitophagy and necrosis in cardiac myocytes treated with doxorubicin or subjected to hypoxia. Moreover, knock-down of Bnip3 was sufficient to prevent mitochondrial fission and doxorubicin-induced cell death supporting the involvement of Bnip3 in doxorubicin cardiotoxity. Interestingly, mitochondrial associated Bnip3 in cells treated with doxorubicin was markedly reduced by EA. This resulted in significantly less mitochondrial fission and cell death. Notably,EA similarly suppressed mitochondrial injury and cell death induced by hypoxia or Bnip3 over-expression. Herein, we identify a novel signaling axis that operationally links EA and Bnip3 for suppression of cardiac cell death. We provide compelling new evidence that EA suppresses mitochondrial injuryand necrotic cell death of cardiac myocytes by functionally abrogating Bnip3 activity. Hence, by suppressing mitochondrial injury induced by Bnip3, EA may provide a therapeutic advantage in reducing oxidative injury and cardiac dysfunction in cancer patients undergoing anthracycline treatment or individuals with ischemic cardiac stress.

Free Radic Biol Med. 2017 Nov ;112:411-422. Epub 2017 Aug 30. PMID: 28838842


Ellagic acid down-regulates expression and function of the Na+/H+ exchanger, decreases cytosolic acidification with subsequent impairment of glycolysis.

BACKGROUND/AIMS: Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi), NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release.METHODS: Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20µM) treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm)/ fluorometric enzymatic assay.RESULTS: A 48 hour treatment with Ellagic acid (20µM) significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%.CONCLUSION: Ellagic acid (20µM) markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those effects presumably contribute to reprogramming and growth inhibition of tumor cells.

Cell Physiol Biochem. 2017 ;41(6):2374-2382. Epub 2017 Apr 27. PMID: 28467979


EGCG inhibits gastric cancer growth and reverses 5-FU resistance in gastric cancer cells.

The effect of 5-fluorouracil (5-FU) chemotherapy for gastric cancer (GC) is limited by drug-resistance. To conquer this drug-resistance, various treatments including combination therapy have been used, but the overall survival has not been improved yet. In our current study, 5-FU resistant GC cells, SGC7901/FU and MGC803/FU, were established by long term exposure to 5-FU, and the proliferation capability of these resistant cells was verified to be reduced. The drug related proteins, MDR1 and P-gp were up-regulated in resistant cells compared to the parental cells. We further found proliferation and tumor growth suppressed effects of epigallocatechin gallate (EGCG), which is the predominant polyphenolic catechin constituent in green tea, on both the 5-FU resistant cells and the SGC7901/FU xenograft. Furthermore, an interesting results showed that reversal of 5-FU resistance of GC cells by EGCG treatment in vivo and in vitro. In the molecular study, We also found that EGCG suppressed the expression of both MDR-1 and P-gp at mRNA and protein levels in vivo and in vitro. Western blot and ELISA assay revealed that EGCG was able to inhibit VEGF secretion and expression, and its up-stream signal regulator, transcription factor activator protein 2A (TFAP2A) was also down-regulated by EGCG, our results indicated that TFAP2A/VEGF axis is one of the critical pathway inhibited by EGCG for cell proliferation and 5-FU resistance. Taken together, our data suggested that EGCG inhibits GC growth and reverses 5-FU resistance of GC through inactivation of TFAP2A/VEGF pathway and down-regulation of MDR-1 and P-gp expression.

Oncotarget. 2017 Oct 10 ;8(47):82842-82853. Epub 2017 Sep 6. PMID: 29137307


These results provide strong preclinical justification for combining cisplatin with eugenol as therapeutic approach for triple-negative breast cancers.

Triple-negative breast tumors are very aggressive and contain relatively high proportion of cancer stem cells, and are resistant to chemotherapeutic drugs including cisplatin. To overcome these limitations, we combined eugenol, a natural polyphenolic molecule, with cisplatin to normalize cisplatin mediated toxicity and potential drug resistance. Interestingly, the combination treatment provided significantly greater cytotoxic and pro-apoptotic effects as compared to treatment with eugenol or cisplatin alone on several triple-negative breast cancer cells both in vitro and in vivo. Furthermore, adding eugenol to cisplatin potentiated the inhibition of breast cancer stem cells by inhibiting ALDH enzyme activity and ALDH-positive tumor initiating cells. We provide also clear evidence that eugenol potentiates cisplatin inhibition of the NF-κB signaling pathway. Indeed, the binding of NF-κB to its cognate binding sites present in the promoters of IL-6 and IL-8 was dramatically reduced, which led to potent down-regulation of the IL-6 and IL-8 cytokines upon combination treatment relative to the single agents. Similar effects were observed on proliferation, inhibition of epithelial-to-mesenchymal transition and stemness markers in tumor xenografts. These results provide strong preclinical justification for combining cisplatin with eugenol as therapeutic approach for triple-negative breast cancers through targeting the resistant ALDH-positive cells and inhibiting the NF-κB pathway.

Mol Carcinog. 2017 Oct 26. Epub 2017 Oct 26. PMID: 29073729


The present results confirm a chemopreventive potential of pistachios.

Pistachios are rich in health-promoting bioactive compounds such as B vitamins,γ-tocopherol, polyphenols and dietary fiber, which could contribute to the reduction of colon cancer risk in terms of chemoprevention (Fischer, S.; Glei, M. Health-Potential of Nuts. Ernaehrungs Umsch. Int. 2013, 60, 206-215.). Since pistachios are often consumed roasted, the present study aims atinvestigating the influence of different roasting conditions (RC) on potential chemopreventive effects of pistachios in colon adenoma cells such as growth and apoptosis, genotoxic- and anti-genotoxic effects and modulation of gene expression of detoxifying enzymes (CAT, SOD2, GPx1, and GSTP1). Fermentation supernatants (FS) were obtained from raw and roasted (RC1 = 141 °C/25 min, RC2 = 160 °C/15 min and RC3 = 185 °C/21 min) pistachios after in vitro fermentation. FS of pistachios significantly reduced LT97 cell growth in a time- and dose-dependent manner. Compared to the blank control, pistachio FS (2.5%) led to a significant average reduction of H₂O₂-induced DNA damage (1.5-fold). Levels of CAT mRNA were significantly increased (1.3-fold, on average for 5% FS). Pistachio FS (5%) significantly increased the number of early apoptotic cells (up to 2.1-fold) and levels of caspase-3 activities (up to 6.9-fold). The present results confirm a chemopreventive potential of pistachios, which is mediated by growth inhibition, induction of apoptosis and anti-genotoxic effects, as well as induction of CAT. These effects remain mostly unaffected by roasting.

Nutrients. 2017 Dec 18 ;9(12). Epub 2017 Dec 18. PMID: 29258268


Walnuts exhibit chemopreventive effects regarding the risk for colon cancer development by inducing expression of genes involved in detoxification.

Walnuts are rich in bioactive compounds such as polyunsaturated fatty acids, polyphenols, and dietary fiber. Therefore, the consumption of walnuts can contribute to a healthy diet and may reduce the risk for colon cancer. Heat treatment like roasting may change the chemical composition of walnuts and therefore their chemopreventive properties. Therefore, the hypothesis of the present study is that different roasting conditions (RCs) alter the chemopreventive effects of walnuts. Thus, the aim of the present study was to investigate whether different RCs (RC1=139.7°C/25 min, RC2=154.5°C/20 min, and RC3=185.5°C/25 min) alter the chemopreventive effects of walnuts. Raw and roasted walnuts were subjected to in vitro digestion and fermentation. After treatment of LT97 colon adenoma cells with fermentation supernatants (FSs), expression of CAT, SOD2, GPx1, GSTP1, and GSTT2 genes as well as cell growth and apoptosis was examined. In comparison to the fermentation blank control, walnut FS particularly increased mRNA levels of CAT 1.7-fold and GSTT2 3.1-fold, whereas GPx1 levels were significantly decreased 0.6-fold. Walnut FS decreased growth of adenoma cells in a time- and dose-dependent manner. In particular, higher concentrations of walnut FS (5%) significantly increased the number of early apoptotic cells 2.0-fold and induced caspase-3 activity 6.8-fold compared with the blank control. The roasting process had no direct impact on the observed effects. In sum, our results indicate that walnuts exhibit chemopreventive effects regarding the risk for colon cancer development by inducing expression of genes involved in detoxification (CAT, GSTT2) and by inducing growth inhibition and apoptosis in colon adenoma cells unaffected by moderate roasting.

Nutr Res. 2017 Nov ;47:72-80. Epub 2017 Sep 18. PMID: 29241580


Bilberrie extracts offers patients with type 2 diabetes the opportunity to manage their own glycaemic levels with diet.

BACKGROUND: Vaccinium myrtillus L. is a species belonging to the genus Vaccinium of the family Ericaceae. Bilberries have drawn attention due to the multiple benefits for the human health, including antioxidant, anti-inflammatory, anticancer, anti-neurodegenerative, and cardioprotective effects. Recently, bilberries were shown to inhibit the activity of carbohydrate-hydrolysing enzymes that can help reduce the intensity of the metabolic syndrome and prevent type 2 diabetes. AIM: In this study, we investigated theα-glucosidase and amyloglucosidase inhibitory activities of polyphenol-rich extracts from fruit of Vaccinium myrtillus L. from different regions in Bulgaria. MATERIALS AND METHODS: The total phenolic content was determined spectrophotometrically using the Folin-Ciocalteu method. With HPLC analysis, phenolic acid composition of extracts was assessed. Enzymatic inhibitory activities were determined according to the methodology by Borooah et al. (1961), and Dewi et al. (2007). Amyloglucosidase assay andα-glucosidase assay were used to measure the inhibition potential of bilberries' extracts. RESULTS: Phenolic compound content ranged from 1299.60 mg to 510.88 mg GAE/100 g for organic extracts and from 453.63 mg to 290.83 mg GAE/100 g for aqueous extracts. Based on qualitative HPLC analyses, gallic acid and chlorogenic acid were found to be among the major phenolic acids present in bilberries. Methanol and aqueous extracts there were found to be effective inhibitors ofα-glucosidase with an IC50 value of 20 μg GAE/ml and 55 μg GAE/ml, respectively. CONCLUSION: The inhibitory activity of bilberries' extracts towardsα-glucosidase offers the patients with type 2 diabetes the opportunity to manage their own glycaemic levels with a diet.

Folia Med (Plovdiv). 2017 06 1 ;59(2):197-202. PMID: 28704188


Polyphenols from chokeberry represent a very valuable natural antioxidant source with antiproliferative products.

The aim of this study was the purification process of polyphenols from Aronia melanocarpa (chokeberry), and the purification parameters were optimised by adsorption and desorption tests. By comparing adsorption and desorption ability of polyphenols from chokeberry on six kinds of macroporous resin, XAD-7 resin was selected. Experiments prove that the best purification parameters of static adsorption and desorption were sample pH = 4.0 with 4 h of adsorption; and desorption solvent is 95% ethanol (pH = 7.0) with 2 h of desorption. The best dynamic parameters were 9.3 bed volume (BV) of sample loading amount at a feeding flow rate of 2 BV/h, and washing the column with 5.8 BV of water, followed by subsequent elution with an eluent volume of 5.0 mL at an elution flow rate of 2 BV/h. Next the antioxidant and antiproliferative activity of polyphenols from chokeberry, blueberries, haskap berries was studied on HepG2 human liver cancer cells. The results show that polyphenol from chokeberry has a strong antioxidant effect. Taking into account the content of polyphenols in fruit, polyphenols from chokeberry represent a very valuable natural antioxidant source with antiproliferative products.

Molecules. 2018 Jan 10 ;23(1). Epub 2018 Jan 10. PMID: 29320456


Resveratrol and pterostilbene have potential for prevention or treatment of several age-related diseases by modulating age-related mechanisms.

Over the past years, several studies have found that foods rich in polyphenols protect against age-related disease, such as atherosclerosis, cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes (T2D), hypertension and Alzheimer's disease. Resveratrol and pterostilbene, the polyphenol found in grape and blueberries, have beneficial effects as anti-aging compounds through modulating the hallmarks of aging, including oxidative damage, inflammation, telomere attrition and cell senescence. In this review, we discuss the relationship between resveratrol and pterostilbene and possible aging biomarker, including oxidative stress, inflammation, and high-calorie diets. Moreover, we also discuss the positive effect of resveratrol and pterostilbene on lifespan, aged-related disease, and health maintenance. Furthermore, we summarize a variety of important mechanisms modulated by resveratrol and pterostilbene possibly involved in attenuating age-associated disorders. Overall, we describe resveratrol and pterostilbene potential for prevention or treatment of several age-related diseases by modulating age-related mechanisms.© 2017 BioFactors, 2017.

Biofactors. 2017 Dec 6. Epub 2017 Dec 6. PMID: 29210129


Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation.

Bioorg Med Chem Lett. 2017 12 1 ;27(23):5337-5343. Epub 2017 Sep 18. PMID: 29122484


Tea polyphenols inhibit docetaxel-induced autophagy and improves therapeutic efficacy of docetaxel in castration-resistant prostate cancer cells.

BACKGROUND: This study investigates the docetaxel-resistant mechanism and explores the effect of tea polyphenols (TP) on autophagy and its related mechanism in human castration-resistant prostate cancer (CRPC) cell lines PC3 and DU145.METHODS: Immunofluorescence assay and annexin V-FITC/PI double staining flow cytometry were used to analyze the apoptosis and autophagy of PC3 and DU145 cells. The expression of autophagy-related proteins was detected by western bolt.RESULTS: Docetaxel could induce autophagy and apoptosis, together with the expression increase in p-JNK, p-Bcl-2 and Beclin1. The level of autophagy was remarkably decreased, but apoptosis was increased after combining with TP. In addition, the expression of p-mTOR was increased after combining with TP.CONCLUSION: Docetaxel induces protective autophagy in CRPC cells by JNK pathway activation and then Bcl-2 phosphorylation and Beclin1 dissociation. TP activates mTOR pathway, which ultimately inhibits docetaxel-induced autophagy and improves therapeutic efficacy of docetaxel in CRPC cells.

Int Urol Nephrol. 2018 Feb 19. Epub 2018 Feb 19. PMID: 29460131


Beneficial roles of honey polyphenols against some human degenerative diseases.

Honey contains many active constituents and antioxidants such as polyphenols. Polyphenols are phytochemicals, a generic term for the several thousand plant-based molecules with antioxidant properties. Many in vitro studies in human cell cultures as well as many animal studies confirm the protective effect of polyphenols on a number of diseases such as cardiovascular diseases (CVD), diabetes, cancer, neurodegenerative diseases, pulmonary diseases, liver diseases and so on. Nevertheless, it is challenging to identify the specific biological mechanism underlying individual polyphenols and to determine how polyphenols impact human health. To date, several studies have attempted to elucidate the molecular pathway for specific polyphenols acting against particular diseases. In this review, we report on the various polyphenols present in different types of honey according to their classification, source, and specific functions and discuss several of the honey polyphenols with the most therapeutic potential to exert an effect on the various pathologies of some major diseases including CVD, diabetes, cancer, and neurodegenerative diseases.

Pharmacol Rep. 2017 Dec ;69(6):1194-1205. Epub 2017 Jul 4. PMID: 29128800


Caffeic acid and caffeic acid phenethyl ester induce apoptosis and cell cycle arrest of breast cancer cells MDA-MB-231.

Studies show that caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) are compounds with potent chemopreventive effects. Breast cancer is a common form of aggressive cancer among women worldwide. This study shows a comparison of CA and CAPE activity on triple-negative human caucasian breast adenocarcinoma line cells (MDA-MB-231). MDA-MB-231 cells were treated by CA and CAPE with doses of from 10 to 100µM, for periods of 24 h and 48 h. Cytotoxicity MTT tests, apoptosis by Annexin V, and cell cycle with Dead Cell Assays were performed. Cytotoxic activity was greater for CAPE compared to CA (both incubation times, same dosage). ICvalues for CAPE were 27.84µM (24 h) and 15.83 µM (48 h) and for CA>10,000µM (24 h) and>1000µM (48 h). Polyphenols induced apoptosis, while CAPE (dose dependently), induced a higher apoptotic effect. CAPE also induced cell cycle arrest in S phase (time and dose dependently), CA did it only for 50 and 100 µM. A dose dependent decline was seen for the G0/G1 phase (CAPE, 48 h), as well as elimination of phase G2/M by 100 µM of CAPE (only mild effect for CA). Comparing CA and CAPE activity on MDA-MB-231, CAPE clearly showed better activity for the same dosages and experiment times.

Molecules. 2017 Sep 15 ;22(9). Epub 2017 Sep 15. PMID: 28926932


Mangiferin inhibits cell migration and invasion in breast cancer.

Breast tumour progression results from the advancement of the disease to a metastatic phenotype. Rac1 and Cdc42 belong to the Rho family of genes that, together with their downstream effectors, Wiskott-Aldrich Syndrome protein-family verprolin-homologous protein 2 (WAVE2) and Arp2/3, assume a vital part in cytoskeletal rearrangement and the arrangement of film projections that advance malignant cell relocation and invasion. Mangiferin is a characteristic polyphenolic compound from Mangifera indica L. (Anacardiaceae), ordinarily referred to as mango, that is consumed worldwide as a natural product, including culinary and seasoning applications. Mangiferin delays breast malignancy development and progression by inhibiting different signalling pathways required in mitogenic signalling and metastatic progression. Studies were performed to analyse the impact of mangiferin on Rac1/WAVE2 flagging, relocation and invasion in highly metastatic human MDA-MB-231 mammary cells. Additional studies led to the observation that comparative treatment with mangiferin caused marked reduction in tumour cell movement and invasion. Taken together, these discoveries demonstrate that mangiferin treatment adequately hinders Rac1/WAVE2 flagging and diminishes metastatic phenotypic expression in malignant mammary cells, indicating that mangiferin may provide a benefit as a novel restorative approach in the treatment of metastatic breast cancer.

Cytotechnology. 2018 Feb 17. Epub 2018 Feb 17. PMID: 29455393


Tea polyphenols and prevention of epigenetic aberrations in cancer.

Tea polyphenols are secondary metabolites of tea plants and are well known for beneficial health effects. They can protect from a variety of illnesses including cancers. Tea polyphenols can prevent cancer by modulating epigenetic aberrations taking place in DNA methylation, histone modifications, and micro-RNAs. By altering these epimutations, they regulate chromatin dynamics and expression of genes those induce or suppress cancer formation. However, majority of the studies in existing literature are carried out for green tea polyphenols rather than black tea polyphenols despite the fact that black tea is the most commonly consumed form of tea (78%) followed by green tea (20%) and other forms of tea. Research findings indicate that tea polyphenols may be potential source from which drugs with less side effects and affordable price can be developed.

J Nat Sci Biol Med. 2018 Jan-Jun;9(1):2-5. PMID: 29456384

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019, Journal Articles copyright of original owners, MeSH copyright NLM.